• Title/Summary/Keyword: Thermodynamics Theory

Search Result 34, Processing Time 0.023 seconds

The Theoretical Calculations of Kinetic and Thermodynamics Parameters and Anharmonic Correction for the Related Reactions of NO3

  • Yu, Hongjing;Liu, Yancheng;Xia, Wenwen;Wang, Li;Jiang, Meiyi;Hu, Wenye;Yao, Li
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.6
    • /
    • pp.419-432
    • /
    • 2021
  • According to the transition state (TS) theory, Gaussian software and Yao and Lin (YL) method, the thermodynamics and kinetic data respectively were calculated, and anharmonic effect was considered for related reactions of NO3. The methods of calculating and fitting kinetic and thermodynamics parameters were provided by least square method and related equations in this paper. Notably, the fitted E of Arrhenius equation was close to the calculated barrier of related reaction by QCISD(T) method. Therefore, the kinetic fitting result can well express the physical meaning of E in Arrhenius equation. Besides, the conversion process and the reaction mechanism of NO3 were researched. For NO3, it seemed that its instability results from its easy reaction with other substances rather than the decompose reaction of itself.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.531-545
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.569-583
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

Estimation Model of Electric Energy Consumption on Logistics Center Based on Thermodynamics Theory (열역학 이론 기반의 물류센터 전기에너지 소비량 산출 모형)

  • Cui, Lian;Kim, Young-Joo;Kim, Cheolsun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6799-6806
    • /
    • 2015
  • Electric energy consumption is always followed by the introduction of diversity scale-up and state-of-the-art equipments in logistic centers. In order to analyze the status and the characteristic of the electric energy consumption quantitatively, and also to evaluate the efficiency of the electric energy, this research aims to develop an estimation model of standard electric energy consumption for logistic centers. The proposed model applies the thermodynamics theory so as to effectively reflect the peculiarity that the temperature in the logistic center influences the electric energy consumption. And the model consists of the energy consumed by the refrigerator, which can be subdivided into the heat conducted through the wall, the heat convected by the open doors and the heat lost into the goods, and the electric consumption of the machinery equipments. The model also includes a variety of explanatory variables to support an operator of logistics centers in evaluating the efficiency of energy consumption and establishing improvement strategies for energy efficiency. Application of the model developed in this study is discussed with observed data on energy consumption of a logistics center.

Separation of Heavy Metal Ions across Novel Mosaic Membrane (하전모자이크 막을 사용하여 중금속이온의 분리)

  • Song, Myung-Kwan;Lee, Jang-Oo;Yang, Wong-Kang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.96-101
    • /
    • 2005
  • A theory for the material transports through ion exchange membrane has been developed on the basis of nonequilibrium thermodynamics by removing the assumption of solvent flow in the previous paper and applied to a detailed study of the ionic transport properties of new charged mosaic membrane(CMM) system. The CMM having two different fixed charges in the polymer membrane indicated unique selective transport behavior then ion-exchange membrane. The separation behavior of ion transport across the CMM with a parallel array of positive and negative functional charges were investigated. It was well-known the analysis of the volume flux and solute flux based on nonequilibrium thermodynamics. Our suggests preferential salt transport across the charged mosaic membranes. Transport properties of heavy metal ions, $Mg^{2+}$, $Mn^{2+}$and sucrose system across the charged mosaic membrane were estimated. As a result, we were known metal salts transport depended largely on the CMM. The reflection coefficient indicated the negative value that suggested preferential material transport and was independent of charged mosaic membrane thickness.

  • PDF

Kirkwood-Buff Solution Theory (커크우드-버프 용액 이론)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.452-460
    • /
    • 2010
  • Any theory of liquid should account for interactions between molecules, since molecules in a liquid are close to each other. For this matter statistical-mechanical methodology has been used and various models have been proposed on the basis of this methodology. Among them Kirkwood-Buff solution theory has attracted a lot of interest, because it is regarded as being the most powerful. In this article Kirkwood-Buff solution theory is revisited and its key equations are derived. On the way to these equations, the concepts of pair correlation function, radial distribution function, Kirkwood-Buff integration are explained and implemented. Since complexity of statical mechanics involved in this theory, the equations are applied to one-component systems and the results are compared to those obtained by classical thermodynamics. This may be a simple way for Kirkwood-Buff solution theory to be examined for its validity.

Salt-Induced Protein Precipitation in Aqueous Solution: Single and Binary Protein Systems

  • Kim, Sang-Gon;Bae, Young-Chan
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.53-61
    • /
    • 2003
  • A molecular-thermodynamic model is developed for the salt-induced protein precipitation. The protein molecules interact through four intermolecular potentials. An equation of state is derived based on the statistical mechanical perturbation theory with the modified Chiew's equation for the fluid phase, Young's equation for the solid phase as the reference system and a perturbation based on the protein-protein effective two body potential. The equation of state provides an expression for the chemical potential of the protein. In a single protein system, the phase separation is represented by fluid-fluid equilibria. The precipitation behaviors are simulated with the partition coefficient at various salt concentrations and degree of pre-aggregation effect for the protein particles. In a binary protein system, we regard the system as a fluid-solid phase equilibrium. At equilibrium, we compute the reduced osmotic pressure-composition diagram in the diverse protein size difference and salt concentrations.

Temperature rise due to impact (충격열에 의한 온도상승)

  • 이병호
    • Journal of the KSME
    • /
    • v.16 no.3
    • /
    • pp.271-276
    • /
    • 1976
  • A theory has been developed for impact heating as well as thermodynamics of impact. The result is very simple and convenient for engineering applications : T=$T(\frac{{V_0}}{V})^{\gamma}$, $where T_0$ and T are the temperatures before and after the impact, $V_0$/ and V the volumes before and after the impact, and $\gamma$ the Gruneisen constant, given in a table in this paper.

  • PDF

One-Dimensional Modeling For Nonlinear Behavior of Ferroelectric Materials (강유전체의 비선형 거동에 대한 1차원 모델링)

  • Kim, Sang-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1378-1383
    • /
    • 2003
  • A ferroelectric (called piezoelectric afterwards) wafer has been widely used as a key component of actuators or sensors of a layer type. According to recent researches, the piezoelectric wafer behaves in a nonlinear way under excessive electro-mechanical loadings. In the present paper, one-dimensional constitutive equations for the nonlinear behavior of a piezoelectric wafer are proposed based on the principles of thermodynamics and a simple viscoplasticity theory. The predictions of the developed model are compared with experimental observations.

  • PDF

A Study for Fixed Type Wave Energy Conversion Device with Oscillating Water Column (고정식 진동수주형 파력발전기에 관한 실험적 연구)

  • 김성근;박노식;박인규
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.136-145
    • /
    • 1996
  • The theory is based on two thermodynamic equations for the air mass in the air column and bydrodynamic equation for the relation between the response of the air in the water column and the incident wave. The numerical model is experimented in a two dimensional water tank and the caisson model with sloped front wall is tested in the large towing tank.

  • PDF