• Title/Summary/Keyword: Thermodynamic parameter

Search Result 104, Processing Time 0.016 seconds

Chemical Reactivity between Ni(II)-Macrocycle Complex Ions ($NiL_m{^{2+}}$) and $CN^-$ (Ni(II)-거대고리 리간드 착이온 ($NiL_m{^{2+}}$) 과 $CN^-$ 이온간의 반응성)

  • Yu-Chul Park;Jong-Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.334-343
    • /
    • 1987
  • The Chemical reactions between $NiL_m{^{2+}}\{$Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}$}\and\ CN^-$ ion were studied by the spectrophotometric method. The equilibrium constants (K_1$) for the 1:1 complex ion, $[NiL_m(CN)]^+\;with\;NiL_m{^{2+}}\;and\;CN^-$ ion were determined in the range of 3 to $25^{\circ}C$. The $K_1\;for\;Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;at\;15^{\circ}C$ was 4.7, 5.3, 6.2, 7.5, 9.4, and 9.8, respectively. The values of $K_1$ decreased with increasing temperature. From the temperature effect on equilibrium constant ($K_1$), thermodynamic parameters $({\Delta}H^{\circ},\;{\Delta}S^{\circ},\;{\Delta}G^{\circ})$ for reaction were evaluated and the reaction of $NiL_m{^{2+}}\;and\;CN^-$ ion was exothermic. $NiL_m{^{2+}\;reacts\;with\;CN^-$ ion to give $Ni(CN)_4{^{2-}}$ ion and macrocyclic ligand $(L_m)$. The kinetics of formation of the $Ni(CN)_4{^{2-}}$ ion of varying the $[CN^-],\;[HCN],\;and\;[OH^-]$ have been investigated at 3∼$25^{\circ}C\;and\;0.5M\;NaClO_4$. Maintaining a constant $[CN^-],\;k_{obs}/[CN^-]^2$ increases linearly with increasing [HCN]. In the presence of large quantities of $[OH^-],\;k_{obs}/[CN^-]^2$ also increases linearly with $[OH^-]$. From the temperature effect on kinetic constant (k_{obs})$, parameter of activation $({\Delta}H^{\neq},\;{\Delta}S^{\neq})$ of reaction of $NiL_m{^{2+}}\;with\;CN^-$ ion were determined. For the $Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;series\;{\Delta}H^{\neq}$ gradually decrease as the d-d transition energy, $ν(cm^{-1})$ decrease. And the reaction of the five $NiL_m{^{2+}}\;with\;CN^-$ ion take place by way of equal paths.

  • PDF

Smile Rearrangement of Herbicidal Flazasulfuron (제초성 Flazasulfuron의 Smile 자리옮김 반응)

  • Lee, Gwnag-Jae;Kim, Yong-Jip;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 1996
  • A series of the herbicidal pyridylsulfonyl areas, none substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(2-pyridylsulfonyl) urea, 3 and 3-trifluoromethyl substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(3-trifluoromethyl-2-pyridylsulfonyl) urea, 5(Flazasulfuron) were synthesizied and the rate of hydrolysis of their has been studied in 25%(v/v) aqueous dioxane at $45^{\circ}C$. From the results of solvent effect($m{\ll}1,\;n{\ll}3\;&\;{\mid}m{\mid}{\ll}{\mid}{\ell}{\mid}$), thermodynamic parameter (${\Delta}S^{\neq}=0.54{\sim}\;-2.19\;e.u.\;&\;{\Delta}H^{\neq}=0.025\;Kcal.mol.^{-1}$), hydrolysis product analysis, $pK_a$ constant(3: 4.9 & 5: lit.4.6) and the rate equation, a marked difference in the kinetics of the reaction of 3 and 5(Flazasulfuron) was observed. It may be concluded that the hydrolysis of 5 proceeds through the $A-S_N2Ar$ reaction via conjugate acid$(5H^+)$ below pH 7.0, whereas, above pH 9.0, the hydrolysis proceeds through irreversibly $(E_1)_{anion}$ and reversibly $(E_1CB)_R$ mechanism via conjugate base(CB), respectively. But in case of 5, $A-S_N2Ar,\;(E_1)anion\;and\;(E_1CB)_R$ mechanism involved Smile rearrangement. The mate of rearrangement of 5 to a 3-trifluoromethyl-2-pyridylpyrimidinyl urea(PPU) in acid and 3-trifluoromethyl-2-pyridyl-4.6-dimethoxypyridinyl amine (PPA) in base was increased about 3.5 times by the introduction of trifluoromethyl group in the 3-position on the 2-pyridyl ring. From the basis of these findings, a possible mechanism for the hydrolysis of 5 was proposed and discussed.

  • PDF

Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants (Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정)

  • Jeon, Sang-K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • The phase-shift method and correlation constants for studying a linear relationship between the behavior ($-{\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and that (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}\theta{\geq}0$) have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) at noble metal/aqueous electrolyte interfaces. At an Ir/0.1 M KOH aqueous electrolyte interface, the Langmuir and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=3.3{\times}10^{-4}\;mol^{-1}$ for the Langmuir and $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$ for the Temkin adsorption isotherm), interaction parameter (g = 4.6 for the Temkin adsorption isotherm), and standard free energies (${\Delta}G_{ads}^0=19.9kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-4}\;mol^{-1}$ and $16.5<{\Delta}G_{\theta}^0<23.3\;kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}\;and\;0.2<\theta<0.8$) of H for the cathodic $H_2$ evolution reaction are determined using the phase-shift method and correlation constants. The inhomogeneous and lateral interaction effects on the adsorption of H are negligible. At the intermediate values of ${\theta},\;i.e,\;0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms (${\theta}\;vs.\;E$) and related electrode kinetic and thermodynamic parameters(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$).

Kinetics and mechanism of hydrolysis of insecticidal buprofezin (살충제 buprofezin의 가수분해 반응 메카니즘)

  • Sung, Nack-Do;Yu, Seong-Jae;Choi, Kyung-Sub;Kwon, Ki-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.46-52
    • /
    • 1998
  • The hydrolysis rate of insecticidal buprofezin(IUPAC : tert-butylimino-3-isopropyl-5-phenylperhydro-1,3,5-thiadiazin-4-one) in the range of pH 2.0 and 12.0 have been examined in 15%(v/v) aqueous dioxane at $45^{\circ}C$. The hydrolysis mechanism of buprofezin is proposed from the pH-effect, solvent effect(${\ell}{\gg}m$), thermodynamic parameter(${\Delta}H^{\neq}$=11.12 $Kcal{\cdot}mol^{-1}$ &, ${\Delta}S^{\neq}=5.0e.u.$), rate equation and hydrolysis product, l-isopropyl-3-phenyl urea. General acid catalyzed hydrolysis and specific acid catalyzed($k_{H3O+}$) hydrolysis through $A-S_{E}2$ and A-2(or $A_{AC}2$) reaction mechanism with orbital-control reaction proceed below pH 8.0 and above pH 9.0, the nucleophilic addition-elimination, $Ad_{N}-E$ mechanism via tetrahedral($sp^{3}$) intermediate is initiation by general base catalyzed($k_{H2O}$) reaction. Buprofezin was more stable in alkaline ($k=10^{-8}sec.^{-1}$) than acid solutions from the sigmoid pH-rate profile. And the half-life($t=\frac{1}{2}$) of hydrolysis reaction in neutral aqueous solution(pH 7.0) at $45^{\circ}C$ was about 3 months.

  • PDF