• Title/Summary/Keyword: Thermodynamic approach

Search Result 78, Processing Time 0.024 seconds

Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process (인쇄회로기판 제조공정 중 발생한 슬러지 내 건식환원 처리를 통한 구리 회수를 위한 슬러지 분석 및 열역학적 계산)

  • Han, Chulwoong;Kim, Young-Min;Kim, Yong Hwan;Son, Seong Ho;Lee, Man Seung;Lee, Ki Woong
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.85-96
    • /
    • 2017
  • In this study, we tried to select a slag system capable of pyro-metallurgical process through analysis of sludge generated from PCB plating and etching process solution. Based on this, the possibility of extracting valuable metals in the sludge was studied by experimental and thermodynamic approaches. The sludge was dried at $100{\sim}500^{\circ}C$ and the morphology, chemical composition and phase of the sludge were analyzed. The possibility of pyro-metallurgical process of sludge was investigated through thermodynamic approach using FactSage software.

Study of the Performance of the Fin-Tube Heat Exchanger of the Miniature Joule-Thomson Refrigerator (쥴톰슨냉동기의 열교환기 성능에 관한 연구)

  • Hong, Yong-Ju;Kim, Hyo-Bong;Park, Seong-Je;Choi, Young-Don
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2009
  • Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, probes of cryosurgery, thermal cameras, missile homing head and guidance system, due to their special features of simple configuration, compact structure and rapid cool-down characteristics. The thermodynamic performance of J-T refrigerator highly depends on the hydraulic and heat transfer characteristics of the recuperative heat exchanger. The typical recuperative heat exchanger of the J-T refrigerator has the double helical tube and fin configuration. In this study, effectiveness-NTU approach was adopted to predict the thermodynamic behaviors of the heat exchanger for the J-T refrigerator. The thermodynamic properties from the REFPROP were used to account the real gas effects of the gas. The results show the effect of the operating conditions on the performance of the heat exchanger and refrigerator for the given heat exchanger. The influences of mass flow rate and the supply pressure on the effectiveness of heat exchanger and the ideal cooling capacity are discussed in details.

The Statistical Thermodynamic Approach to the Liquid-Vapor Interface of Binary Solution (이성분 용액의 액체-증기 계면에 대한 통계 열역학적 연구)

  • Hyungsuk Park
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.133-145
    • /
    • 1971
  • A method of theoretical calculation of the thermodynamic properties for liquid-vapor interface of binary solution is developed according to the transient state theory of significant liquid structure. The surface tensions, the adsorbed amounts at the liquid-vapor interface and the activity coefficients of the components for the solutions of $C_6H_{12}-C_6H_6$ $CCI_4-C_6H_6$, $CHCl_3-C_6H_6$, $CHCl_3-CCl_4$, $CCl_4-CS_2$ are calculated through the full ranges of the compositions.

  • PDF

Thermodynamics of Sound Velocity (음속의 열역학)

  • Kwon, Yong-Jung;Lee, Joon-Yong;Mansoori, G. Ali
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.51-72
    • /
    • 1997
  • The sound velocity measurements can permit much higher precision than that obtainable in the direct PVT experiments in addition to producing static and dynamic properties simultaneously, and thus the study on the sound velocity has been considered as another important approach to a fundamental understanding and description of the structure of fluids. This review deals with what have been done on studies of the sound velocity for evaluating thermodynamic properties with an emphasis on the development of the methods to extract the thermodynamic properties from the experimental data on sound velocity.

  • PDF

Corrosion of Alumina-Chromia Refractory by Alkali Vapors: 1. Thermodynamic Approach

  • Lee, Kyoung-Ho;Jesse J. Brown Jr
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 1995
  • Theoretical predictions were made for thermodynamically stable phases which formed when alkali(sodium and Potassium) vapors reacted with the 90% $Al_2O_3$-10% $Cr_2O_3$ refractory under coal gasifying atmosphere using the computer program of SOLGASMIX-PV. The calculation results showed that the stable compounds that formed were $X_2O$.$Al_2O_3$ and $X_2O$.$llAl_2O_3$(X=$Na^+$ or $K^+$), depending upon the alkali concentration. The presence of sulfur in gasifying atmospheres did not appear to affect the species of alkali reaction products. Alkali attack at high temperatures is likely to cause serious degradation at the hot face of the refractory, indicating that the alkali concentration is an important factor to affect the degradation of the refroctory.

  • PDF

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Thermodynamic Approach to the Mixture Formation Process of Evaporative Diesel Spray (증발디젤분무의 혼합기 형성과정에 대한 열역학적 접근)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.201-206
    • /
    • 2009
  • The focus of this work is placed on the analysis of the mixture formation process under the evaporative diesel-free spray conditions. In order to examine homogeneity of mixture within the vapor phase region of the injected spray, image analysis was carried out based on the entropy of statistical thermodynamics. As an experimental parameter, the injection pressure and ambient gas density were selected, and effects of the injection pressure and density variation of ambient gas on the mixture formation process in the evaporative diesel spray were investigated. In the case of application of the thermodynamic entropy analysis to evaporative diesel spray, the value of the dimensionless entropy always increases with increase in time from injection start. Consequently, the dimensionless entropy in the case of the higher injection pressure is higher than that of lower injection pressure during initial injection period.

Thermodynamic Properties of the Polymer Solutions

  • Lee, Woong-Ki;Pak, Hyung- Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.337-343
    • /
    • 1985
  • A statistical mechanical approach to elucidate the solvent effects on the high polymer solutions has been carried out on the basis of the simple model of liquids improved by Pak. In our works, the partition function of the polymer solutions is formulated by the lattice model and our simple treatment of liquid structures. For the ideal polymer solutions proposed by Flory, thermodynamic functions of the polymer solutions are obtained and equations of mixing properties and partial molar quantities are derived from the presented partition function of the polymer solutions. Partial molar quantities are calculated for the rubber solutions in carbon disulfide, benzene and carbon tetrachloride. Comparisons have been made between our equations and those of Flory's original paper for partial molar properties of the rubber-benzene system. Comparing the experimental data of the osmotic pressure of polystyrene-cyclohexane system with our calculated values and those of Flory's, our values fit to the agreeable degrees better than those of Flory's.

Rich Phase Separation Behavior of Biomolecules

  • Shin, Yongdae
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.6-15
    • /
    • 2022
  • Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.

A Study on the Thermodynamic Analysis for the DME Separation Process (DME 분리공정의 열역학적 해석에 대한 연구)

  • Cho, Jung-Ho;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.590-596
    • /
    • 2010
  • Through this study, we have attempted the thermodynamic analysis on the dimethyl ether (DME) separation process, which can be used for diesel alternative fuel, additive to LPG and natural gas. And we also have completed the simulation of DME separation process using PRO/II with PROVISION. As an appropriate thermodynamic models, we selected NRTL liquid activity coefficient model to describe the non-ideality between methanol and water. To estimate the vapor phase non-idealities, we have chosen the Peng-Robinson equation of state model. And we also use the Henry's law option to predict the solubilities of non-condensible gases like CO, $CO_2$, $H_2$, $CH_2$ and $N_2$ in methanol solvent. Case study showed that optimal solvent to feed molar ratio was 3.40