• Title/Summary/Keyword: Thermodynamic Models

Search Result 149, Processing Time 0.019 seconds

Modelling of strains in reinforced concrete flexural members using alpha-stable distribution

  • Rao, K. Balaji;Anoop, M.B.;Kesavan, K.;Balasubramanian, S.R.;Ravisankar, K.;Iyer, Nagesh R.
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.411-440
    • /
    • 2013
  • Large fluctuations in surface strain at the level of steel are expected in reinforced concrete flexural members at a given stage of loading due to the emergent structure (emergence of new crack patterns). This has been identified in developing deterministic constitutive models for finite element applications in Ibrahimbegovic et al. (2010). The aim of this paper is to identify a suitable probability distribution for describing the large deviations at far from equilibrium points due to emergent structures, based on phenomenological, thermodynamic and statistical considerations. Motivated by the investigations reported by Prigogine (1978) and Rubi (2008), distributions with heavy tails (namely, alpha-stable distributions) are proposed for modeling the variations in strain in reinforced concrete flexural members to account for the large fluctuations. The applicability of alpha-stable distributions at or in the neighborhood of far from equilibrium points is examined based on the results obtained from carefully planned experimental investigations, on seven reinforced concrete flexural members. It is found that alpha-stable distribution performs better than normal distribution for modeling the observed surface strains in reinforced concrete flexural members at these points.

Liquid-Liquid Equilibrium and Physical Properties of Aqueous Mixtures of Poly (Ethylene Glycol) 3000 with Tri-Potassium Citrate at Different pH: Experiment, Correlation and Thermodynamic Modeling

  • Ketabi, Mahnam;Pirdashti, Mohsen;Mobalegholeslam, Poorya
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.12-23
    • /
    • 2019
  • The new experimental data of liquid-liquid equilibrium (LLE) of aqueous two-phase system (ATPS) consisting of poly(ethylene glycol) 3000 + tri-potassium citrate at different pH were presented. It was found that an increase in pH resulted in the expansion of the two-phase region. The TLL and STL increased with increasing the pH values. The Merchuk equation can be appropriately employed to correlate the binodal curves and also the tie-line compositions were adjusted to both the Othmer-Tobias and Bancroft equations. In order to calculate the compositions of the phase and the ends of the tie-lines, density and refractive indices as two physical properties were used. Finally, the extended UNIQUAC, UNIFAC, Virial-(Mobalegholeslam & Bakhshi) and modified UNIQUAC-FV were used to measure the phase equilibria at different pH. The results of the models suggested that it can be used quite well to correlate the LLE in an aqueous solution of polymer-salt.

Comparative study on Corrosion Inhibition of Vietnam Orange Peel Essential Oil with Urotropine and Insight of Corrosion Inhibition Mechanism for Mild Steel in Hydrochloric Solution

  • Bui, Huyen T.T.;Dang, Trung-Dung;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.69-81
    • /
    • 2019
  • The corrosion inhibiting mechanism of Vietnam orange peel essential oil (OPEO) for mild steel in 1 N HCl solution was investigated elaborately. Corrosion inhibition ability of OPEO was characterized by electrochemical polarization, electrochemical impedance spectroscopy (EIS), and weight loss method. In the corrosive solution, OPEO worked as a mixed inhibitor and the inhibition efficiency of OPEO increased with the increase of its concentration. High inhibition efficiencies over 90% were achieved for the concentration of 3 - 4 g/L OPEO, comparable to that of 3.5 g/L urotropine (URO), a commercial corrosion inhibitor for acid media used in industry. By using adsorption isotherm models (Langmuir, Temkin and Frumkin), thermodynamic parameters of adsorption were calculated. The obtained results indicated physical adsorption mechanism of OPEO on the steel surface. The components responsible for the corrosion inhibition activity of OPEO were not only D-limonene, but also other compounds, which contain C=O, C=C, O-H, C-O-C, -C=CH and C-H bonding groups in the molecules.

Investigation of blasting impact on limestone of varying quality using FEA

  • Dimitraki, Lamprini S.;Christaras, Basile G.;Arampelos, Nikolas D.
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.111-121
    • /
    • 2021
  • Large deformation and rapid pressure propagation take place inside the rock mass under the dynamic loads caused by the explosives, on quarry faces in order to extract aggregate material. The complexity of the science of rock blasting is due to a number of factors that affect the phenomenon. However, blasting engineering computations could be facilitated by innovative software algorithms in order to determine the results of the violent explosion, since field experiments are particularly difficult to be conducted. The present research focuses on the design of a Finite Element Analysis (FEA) code, for investigating in detail the behavior of limestone under the blasting effect of Ammonium Nitrate & Fuel Oil (ANFO). Specifically, the manuscript presents the FEA models and the relevant transient analysis results, simulating the blasting process for three types of limestone, ranging from poor to very good quality. The Finite Element code was developed by applying the Jones-Wilkins-Lee (JWL) equation of state to describe the thermodynamic state of ANFO and the pressure dependent Drucker-Prager failure criterion to define the limestone plasticity behavior, under blasting induced, high rate stress. A progressive damage model was also used in order to define the stiffness degradation and destruction of the material. This paper performs a comparative analysis and quantifies the phenomena regarding pressure, stress distribution and energy balance, for three types of limestone. The ultimate goal of this research is to provide an answer for a number of scientific questions, considering various phenomena taking place during the explosion event, using advanced computational tools.

Investigation of Thermal/hygrothermal Aging Effects on the Ignition Characteristics of Ti Metal-based Pyrotechnics and Construction of the Aging Models (열/수분노화로 인한 Ti 금속 기반의 파이로 물질의 점화 성능 변화와 노화 모델 제시)

  • Oh, Juyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.26-41
    • /
    • 2021
  • Titanium hydride potassium perchlorate (THPP) has played an important role as initiators of the propulsion system. However, the 'aging' may cause performance degradation and even give rise to a failure in the total system. In this study, various hygrothermal aging conditions were considered and the aging effects on thermodynamic and ignition characteristics of THPP are provided via thermal analysis and ignition measurements. Also, physical-chemical changes were identified by morphological analysis. In conclusion, thermal aging led to Eα decrease-high reactivity due to oxidizer decomposition whereas hygrothermal aging gave rise to an opposite tendency by fuel oxidation.

Adsorption Kinetic and Thermodynamic Studies of Tricyclazole on Granular Activated Carbon (입상 활성탄에 대한 트리사이크라졸의 흡착동력학 및 열역학적 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, H.T.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.623-629
    • /
    • 2011
  • The adsorption characteristics of tricyclazole by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of tricyclazole were carried out at 298, 308 and 318 K, using aqueous solutions with 250, 500 and 1,000 mg/L initial concentration of tricyclazole. It was established that the adsorption equilibrium of tricyclazole on granular activated carbon was successfully fitted by Freundlich isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant ($k_2$) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 250, 500 and 1,000 mg/L initial concentration of tricyclazole, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The positive value for enthalpy, -66.43 kJ/mol indicated that adsorption interaction of tricyclazole on activated carbon was an exothermic process. The estimated values for standard free energy were -5.08~-8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a exothermic process.

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

Open-ended Coaxial Probe Technique for the Dielectric Characterization of Propylene Carbonate, Dimethyl Carbonate and Their Mixtures from 0.1 to 8 GHz at 288.15, 298.15, and 308.15 K (개방 단말 동축선을 활용한 프로필렌 카보네이트, 디메틸 카보네이트 및 이들의 이성분계 혼합물의 유전 이완 측정과 해석)

  • Hyo Jung Kim;Seung-Wan Song;Tae Jun Yoon
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.228-238
    • /
    • 2024
  • Electrolytes are one of the essential components of a lithium-ion battery. They determine the battery's lifespan and cell characteristics. The dielectric constant is a key thermophysical property for determining how much salt can be dissociated and solvated in a solution. Hence, fast and reliable dielectric constant measurement is essential when formulating an electrolyte solution. This work implemented an open-ended coaxial probe (OECP) station as a quick and reliable tool to measure the complex permittivity spectra of electrolyte solutions. The capability of the OECP station was tested by measuring the complex permittivity of propylene carbonate (PC), dimethyl carbonate (DMC), and their mixtures from 0.1 to 8 GHz at 288.15, 298.15, and 308.15 K. The obtained dielectric spectra were then interpreted based on dielectric relaxation models and thermodynamic theories. The measured static dielectric constant data agreed well with the data from previous studies. They were also correlated using the Wang-Anderko thermodynamic model, showing approximately a 1% deviation from the experimental data. In addition, the relaxation characteristics, including the relaxation time and the Cole-Davidson exponent, showed that the microstructure of the solution significantly changes at the propylene carbonate mole fraction of 0.4. These results and methodologies are expected to contribute to the further understanding of electrolyte solutions and ultimately lead to the optimization of electrolyte formulation for lithium-ion batteries.

Numerical Study on the Role of Sea-ice Using Ocean General Circulation Model (해양대순환모형을 이용한 해빙의 역할에 관한 수치실험 연구)

  • Lee, Jin-Ah;Ahn, Joong-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.225-233
    • /
    • 2001
  • In order to find out the role of sea-ice in the climate system, a thermodynamic sea-ice model has been developed and included in the ocean general circulation model, MOM2, for the construction of OGCM/sea-ice coupled model in this study. By using the model developed, seasonal mean sea-ice distribution has been simulated, first of all. The role of sea-ice in the sense of large scale ocean circulation has been studied by comparing the results of OGCM/sea-ice coupled model experiment with OGCM-standalone experiment. At the same time, the coupled model has been verified by comparing and analysing the results of the other models and observation. The coupled model has reasonably simulated the overall seasonal distribution of sea-ice in the high latitudes of both hemispheres. In the comparative analysis between the OGCM/sea-ice coupled and OGCM-standalone experiments, the sea-ice is playing important roles on maintaining not only the distributions of temperature and salinity in high latitudes of both hemispheres, but also the meridional ocean circulation associated with south ocean cell, southern hemisphere cell and zonal ocean circulation such as a circum-polar current.

  • PDF

Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine (다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측)

  • 이병해;이재철;송준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF