• Title/Summary/Keyword: Thermocycler

Search Result 6, Processing Time 0.03 seconds

Peltier-based low cost PCR Thermocycler (Peltier 기반 보급형 PCR Thermocycler)

  • Kim, Ji-Min;Park, Chan-Young;Kim, Jong-Dae
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.809-812
    • /
    • 2013
  • 중합효소 연쇄 반응(polymerase chain reaction, PCR)은 현재 유전물질을 조작하여 실험하는 거의 모든 과정에 사용하고 있는 검사법으로, 검출을 원하는 특정 표적 유전물질을 증폭하는 방법이다. GUI 개발 환경이나 사용자 접근성을 고려하여 윈도우시스템이 탑재된 PC나 그의 임베디드 버전들을 호스트로 사용할 경우, 개발 인력 및 기간 등의 자원 절약과 함께 제품의 보급에도 많은 도움이 될 것이다. 본 연구에서는 Peltier를 기반으로 PCR thermocycler에서 생화학 처리과정의 구동 기능을 저 기능의 지역시스템을 구현하고, PC에서 PCR 프로토콜 등의 데이터 처리 및 사용자 인터페이스 관리기능을 구현하여 제품 개발에 필요한 시간 및 비용과 유지보수 비용을 절감하여 저가의 보급형 PCR thermocycler를 연구 개발 하였다.

Detection of Clostridium difficile by Loop-Mediated Isothermal Amplification (등온증폭법을 이용한 Clostridium difficile 검출)

  • In, Ye-Won;Ha, Su-Jeong;Yang, Seung-Kuk;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1326-1330
    • /
    • 2012
  • This study was conducted to develop a loop-mediated isothermal amplification (LAMP) method for the detection of Clostridium difficile. The tested target gene was 16S ribosomal RNA. Five different LAMP primer sets were designed, and LAMP was performed. All primer sets targeting the 16S rRNA gene (BIP, FIP, B3, F3, LF, PF) were determined as positive in tcdA-positive, tcdB-postive ($A^+B^+$) and tcdA-negative, tcdB-negative ($A^-B^-$) Clostridium difficile strains. As the LAMP reaction took less than 80 min and did not require expensive machine such as thermocycler, it can be used as a rapid and simple detection method for foodborne pathogens.

Loop-mediated Isothermal Amplification assay for Detection of Candidatus Liberibacter Asiaticus, a Causal Agent of Citrus Huanglongbing

  • Choi, Cheol Woo;Hyun, Jae Wook;Hwang, Rok Yeon;Powell, Charles A
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Huanglongbing (HLB, Citrus greening disease) is one of the most devastating diseases that threaten citrus production worldwide. Although HLB presents systemically, low titer and uneven distribution of these bacteria within infected plants can make reliable detection difficult. It was known loop-mediated isothermal amplification (LAMP) method has the advantages of being highly specific, rapid, efficient, and laborsaving for detection of plant pathogens. We developed a new LAMP method targeting gene contained tandem repeat for more rapid and sensitive detection of Candidatus Liberibacter asiaticus (CLas), putative causal agent of the citrus huanglongbing. This new LAMP method was 10 folds more sensitive than conventional PCR in detecting the HLB pathogen and similar to that of real-time PCR in visual detection assay by adding SYBR Green I to mixture and 1% agarose gel electrophoresis. Positive reactions were achieved in reaction temperature 57, 60 and $62^{\circ}C$ but not $65^{\circ}C$. Although this LAMP method was not more sensitive than real-time PCR, it does not require a thermocycler for amplification or agarose gel electrophoresis for resolution. Thus, we expect that this LAMP method shows strong promise as a reliable, rapid, and cost-effective method of detecting the CLas in citrus and can be applied for rapid diagnosis is needed.

Design of an Inexpensive Heater using Chip Resistors for a Portable Real-time Microchip PCR System (저항소자를 이용한 휴대형 Real-time PCR 기기용 히터 제작)

  • Choi, Hyoung-jun;Kim, Jeong-tae;Koo, Chi-wan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.295-301
    • /
    • 2019
  • A heater in a portable real-time polymerase chain reaction(PCR) system is one of the important factors for controlling the PCR thermocycle precisely. Since heaters are integrated on a small-sized PCR chip for rapid heating and fabricated by semiconductor processes, the cost of producing PCR chips is high. Here, we propose to use chip resistors as an inexpensive and accurate temperature control method. The temperature distribution was simulated using one or two chip resistors on a real-time PCR chip and the PCR chip with uniform temperature distribution was fabricated. The temperature rise and fall rates were $18^{\circ}C/s$ and $3^{\circ}C/s$, respectively.

Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification (Reverse transcription Loop-mediated isothermal amplification을 이용한 Soybean mosaic virus의 진단)

  • Lee, Yeong-Hoon;Bae, Dae-Hyeon;Kim, Bong-Sub;Yoon, Young-Nam;Bae, Soon-Do;Kim, Hyun-Joo;Mainali, Bishwo P.;Park, In-Hee;Lee, Su-Heon;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • Soybean mosaic virus (SMV) is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at $58^{\circ}C$ for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.

Establishment of a Tm-shift Method for Detection of Cat-Derived Hookworms

  • Fu, Yeqi;Liu, Yunqiu;Abuzeid, Asmaa M.I.;Huang, Yue;Zhou, Xue;He, Long;Zhao, Qi;Li, Xiu;Liu, Jumei;Ran, Rongkun;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Melting temperature shift ($T_m-shift$) is a new detection method that analyze the melting curve on real-time PCR thermocycler using SYBR Green I fluorescent dye. To establish a $T_m-shift$ method for the detection of Ancylostoma ceylanicum and A. tubaeforme in cats, specific primers, with GC tail of unequal length attached to their 5' end, were designed based on 2 SNP loci (ITS101 and ITS296) of the internal transcribed spacer 1 (ITS1) sequences. The standard curve of $T_m-shift$ was established using the standard plasmids of A. ceylanicum (AceP) and A. tubaeforme (AtuP). The $T_m-shift$ method stability, sensitivity, and accuracy were tested with reference to the standard curve, and clinical fecal samples were also examined. The results demonstrated that the 2 sets of primers based on the 2 SNPs could accurately distinguish between A. ceylanicum and A. tubaeforme. The coefficient of variation (CV) of $T_m$- values of AceP and AtuP was 0.07% and 0.06% in ITS101 and was 0.06% and 0.08% in ITS296, respectively. The minimum detectable DNA concentration was $5.22{\times}10^{-6}$ and $5.28{\times}10^{-6}ng/{\mu}l$ samples of AceP and AtuP, respectively. The accuracy of $T_m-shift$ method reached 100% based on examination of 10 hookworm DNA samples with known species. In the clinical detection of hookworm in 69 stray cat fecal sample, the $T_m-shift$ detection results were consistent with the microscopic examination and successfully differentiated between the 2-hookworm species. In conclusion, the developed method is a rapid, sensitive and accurate technique and can provide a promising tool for clinical detection and epidemiological investigation of cat-derived hookworms.