• Title/Summary/Keyword: Thermochronology

Search Result 2, Processing Time 0.016 seconds

Thermal and uplift histories of Mesozoic granites in Southeast Korea: new fission track evidences

  • Shin, Seong-Cheon;Susumu Nishimura
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.104-121
    • /
    • 1993
  • Fission track (FT) thermochronological analyses on Mesozoic granites provide new information about cooling and uplift histories in Southeast Korea. Twenty-nine new FT sphene, zircon and apatite ages and seven track length measurements are presented for eleven granite samples. Measured mineral ages against assumed closure temperatures yield cooling rates for each sample. Relatively rapid (7-$15^{\circ}C$/Ma) and simple cooling patterns from the middle Cretaceouss (ca. 90-100 Ma) granites are caused mainly by a high thermal contrast between the intruding magma and country rocks at shallow crustal levels (ca. 1-2.5 km-depths). On the contrary, a slow overall cooling (1-$4^{\circ}C$/Ma) of the Triassic to Jurassic granites (ca. 250-200 Ma), emplaced at deep depths (>>9 km), may mainly depend upon very slow denudation of the overlying crust. The uplift history of the Triassic Yeongdeog Pluton in the Yeongyang Subbasin, west of the Yangsan Fault, is characterized by a relatively rapid uplift (~0.4 mm/a) before the total unroofing of the pluton in the earliest Cretaceous (~140 Ma) followed by a subsidence (~0.2mm/a) during the Hayang Group sedimentation. Stability of original FT zircon ages (156 Ma) and complete erasure of apatite ages suggest a range of 3 to 5.5 km for the basin subsidence. Since 120 Ma up to present, the Yeongyang Subbasin has been slowly uplifted (~0.04 mm/a). The FT age patterns of Jurassic granites both from the northeastern wing of the Ryeongnam Massif and from the northern edge of the Pohang-Kampo Block indicate that the two geologic units have been slowly uplifted with a same mean rate (~0.04 mm/a) since early Cretaceous. Estimates of Cenozoic total uplifts since 100 Ma are different: Ryeongnam Massif (~6 km)=Pohang-Kampo Block (~6 km)>Yeongyang Subbasin(~4 km).

  • PDF

(U-Th)/He Dating on Martian Meteorites: Reviews and Perspectives (화성운석에 대한(U-Th)/He 연령 측정: 기존 연구 및 전망)

  • Min, Kyoung-Won;Lee, Seung-Ryeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.255-267
    • /
    • 2010
  • The primary utilization of recently improved (U-Th)/He thermochronometry is to reveal the low-T thermal histories of shallow crustal sections or transient episodes (such as wildfires or meteorite impacts) because of the high sensitivity of He diffusion to temperature in host minerals. In this contribution, we present reviews and perspectives regarding how this method can be used to characterize the ejection-related shock metamorphism of Martian meteorites. The temperature conditions of shock metamorphism can be constrained through shock recovery experiments, paleomagnetism, and $^{40}Ar/^{39}Ar$ and (U-Th)/He dating. The most reliable constraints can be deduced when these independent approaches are combined. However, the thermal history of the ALH84001 Martian meteorite has been under serious debate because the different methods have yielded contrasting results. Recent work has shown how single-grain (U-Th)/He and $^{40}Ar/^{39}Ar$ dating, two noble-gas based thermochronometries with different T sensitivities, can be used to resolve this issue, providing a good example for future research on other meteorites.