• Title/Summary/Keyword: Thermo-optic device

Search Result 20, Processing Time 0.025 seconds

Active optical coupler using the side polished single mode fiber and thermo-optic polymer multimode planar waveguide (측면 연마된 단일모드 광섬유와 열 광학 다중모드 평면도파로를 이용한 능동형 광 결합기)

  • 김광택;유호종;김성국;이소영;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.248-253
    • /
    • 1999
  • In this paper, we have investigated a fiber type active coupler which utilizes the mode coupling between the side polished single mode optical fiber and the active multimode planar waveguide. The proposed device can be used for not only tunable wavelength filter or optical intensity modulator but also a tool for measuring optical properties of guiding material such as refractive index, birefringence, electro-optic coefficient, and thermo-optic coefficient. We gave designed and optimized a coupler structure using the BPM and fabricated the device using thermo-optic polymer as active planar waveguide overlay. The device showed that insertion loss was less then 0.5 dB, extinction ratio was -13 dB at the resonance wavelength, and the wavelength tunablity due to thermo-optic effect was -1.5 nm/$^{\circ}C$. The active coupler using thermo-optic effect can be used as a wavelength tunable filer, an optical intensity modulator and an optical sensor. pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

  • PDF

Development of 1×16 Thermo-optic MZI Switch Using Multimode Interference Coupler (다중모드 간섭현상을 이용한 1×16 마하젠더 스위치 개발)

  • Kim, Sung-Won;Hong, Jong-Kyun;Lee, Sang-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.469-474
    • /
    • 2006
  • A $1{\times}16$ thermo-optic switch with small excess loss using multimode interference(MMI) couplers is designed, fabricated, and measured. This paper introduces the proposed $1{\times}16$ thermo-optic switch, and discusses the measurement results. The $1{\times}16$ thermo-optic switch is farmed as 4-stage which consists of 15 unit devices. The unit devices are the $2{\times}2$ thermo-optic switches with Mach-Zehnder interferometer(MZI) structure. The characteristics of the $1{\times}16$ thermo-optic switch depends strongly on each unit device. The unit deviceconsists of two 3-dB general interference MMI couplers and two single mode waveguide arms as a phase shifter. First of all, the 3-dB optical splitter and $2{\times}2$ MZI thermo-optic switch have been tested to confirm the characteristics of the unit devices of the $1{\times}16$ MZI thermo-optic switch. Using the measurement results of the unit devices, the $1{\times}16$ MZI thermo-optic switch can be produced with better characteristics. The resultant structure of the MMI coupler with the optical light source of wavelength of 1550nm for the $1{\times}16$ thermo-optic switch is that the width and the optimized length are $25{\mu}m\;and\;1580{\mu}m$, respectively. The smallest excess loss fur the unit device is -0.5dB and the average excess loss is -0.7dB.

Fabrication of a low-power 1×2 polymeric thermo-optic switch with a trench structure (트렌치 구조를 이용한 저전력 1×2 폴리머 열 광학 스위치의 제작)

  • 여동민;김기홍;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • A low-power $1{\times}2$ polymeric thermo-optic switch with a trench structure is proposed and fabricated. The trench structure in the optimized region slows down the heat flow from the electrodes, which contributes to the reduction of power consumption. The temperature distribution in the polymer layers has been adjusted to increase the temperature gradient between the two arms of the Y-branch. For comparison, a $1{\times}2$ polymeric thermo-optic switch with no trench structure is fabricated together on the same substrate. In the device with a trench structure, the measured crosstalk is less than -17.0 dB for TE polarization.-15.0 dB for TM polarization. The power consumption is about 66 mW, which is 25% less than that of the device with no trench structure.

Development of Trenched SOI 1X2 Thermo-Optic Switch for Improvement of Thermal Diffusion Effect (열확산 효과 개선을 위한 트렌치 구조의 SOI 1X2 열광학 스위치 개발)

  • 박종대;서동수;이기수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1255-1260
    • /
    • 2003
  • In order to reduce driving power consumption, we propose and fabricate a new structure of asymmetric SOI 1${\times}$2 thermo-optic switch that has a back side silicon trenched structure. Compared to conventional SOI thermo optic switches without heat sink structure, it shows an improvement of switching power reduction from about 4 watt to 1.8 watt without sacrificing cross talk of about 20 ㏈ at the light wavelength of 1.55 $\mu\textrm{m}$. Here we also described the main design consideration and fabrication procedure for the proposed device.

Highly sensitive temperature sensor based on etched fiber with thermally expanded core (식각된 열확산 코어 광섬유를 이용한 고감도 온도 센서)

  • Kim, Kwang-Taek;Song, Hyun-Suk;Shin, Eun-Soo;Hong, Ki-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.263-268
    • /
    • 2006
  • We have demonstrated a highly sensitive temperature sensor using an etched single mode fiber with a thermally expanded core region. Large core size of thermally expanded core facilitates access to evanescent wave by the wet etching. The etched region was surrounded by a low dispersive external medium with high thermo-optic coefficient. Due to the large difference between the dispersion property of the fiber and that of the external medium, the device reveals a cut-off properties at spectral region. The cut-off wavelength was shifted by the variations of the environmental temperatures because of thermo-optic effect of the external medium. The sensitivity of the fabricated device was found to be $45nm/^{\circ}C$.

Thermo-Optically Tunable Filter Using Evanescent Field Coupling Between Side-Polished Polarization Maintaining Fiber and Polymer Planar Waveguide (측면 연마된 편광유지 광섬유와 폴리머 평면도파로 사이의 소산장 결합을 이용한 열 광학 가변 필터)

  • 윤대성;김광택
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • We have demonstrated a tunable Inter based on an asymmetric directional coupler made of a side-polished polarization maintaining fiber coupled with a polymer planar waveguide. The thermo-optic effects of the polymer planar waveguide induced by a micro-strip heater placed on the top layer of the device leads to shift of resonance wavelength of the coupler. The fabricated device exhibited wide tunable range exceeding 230 nm with 720 ㎽ of applied electrical power.

Polymer $1{\times}2$ Thermo-Optic Digital Optical Switch Based on the Total-Internal-Reflection Effect

  • Han, Young-Tak;Shin, Jang-Uk;Park, Sang-Ho;Han, Sang-Pil;Baek, Yong-Soon;Lee, Chul-Hee;Noh, Young-Ouk;Park, Hyo-Hoon
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.275-278
    • /
    • 2011
  • This letter presents a polymer $1{\times}2$ thermo-optic totalinternal-reflection digital optical switch (TIR-DOS) with an index contrast of 1.5%-${\delta}$ operating at low power consumption. The structure of our $1{\times}2$ TIR-DOS was created by adding a reflection port to that of a conventional multimode filtering variable optical attenuator. To improve the total-internalr-eflection efficiency, a heater offset was applied to the crossing region of multimode waveguides of the TIR-DOS. The fabricated $1{\times}2$ TIR-DOS shows a low electrical power consumption of 18 mW for an on-off ratio of 35 dB.

4-Branch Waveguide Thermo-Optic Switch With Unequal Width Heaters (크기가 다른 전극폭을 갖는 4분기 광도파로형 열광학스위치)

  • Song, Hyun-Chae;Rhee Tae-Hyung;Shin, Sang-Yung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.57-63
    • /
    • 2000
  • A multi-branch thermo-optic switch has a problem that driving powers in the switching states are different from each other; the power consumption for the inner output port is more than twice as large as that form the outer output port. In this pater, to solve this problem unequal width heaters and the waveguide structure with a thin overcladding layer are proposed in a four-branch thermo-optic switch. The proposed structure is fabricated with the polymer materials with high index difference, Teflon and polyimides. The fabricated device was measured at the wavelength of 1550 nm. The measured characteristics exhibit the smaller difference in the power consumption between the switching states and the driving power les than the previous four-branch thermo-optic switch with equal width heaters. As for the device performance, the crosstalk is better than - 16 dB at about 310 ~ 390 mW, the insertion loss is 4.7 dB, and the switching time is less than 1 ms.

  • PDF

Measurement of Optical Properties of a Liquid Based on a Side-polished Optical Fiber (측면 연마 광섬유를 이용한 용액의 광학 특성 측정)

  • Lee, Hyeon Jin;Kim, Kwang Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.195-198
    • /
    • 2014
  • In this paper, a measurement method to obtain the optical properties of a liquid base on a side-polished single mode fiber was proposed and demonstrated. The device showed periodic resonance coupling against wavelengths. The refractive index and dispersion characteristics of a liquid were calculated by use of the spacings of periodic resonance wavelengths of the device. The thermo-optic coefficient of the liquid was obtained by monitering the shift of resonance wavelengths of the devices with change of environmental temperature.

Polarization-independent temperature sensor using cladding layers of the overlay waveguide coupled with a side-polished fiber (측면 연마 광섬유와 결합된 상부 도파로의 클래딩을 이용한 편광 무의존 온도센서)

  • 손경락;김광택;송재원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.467-472
    • /
    • 2002
  • In this paper, we propose a polarization-insensitive temperature sensor using a thermo-optic effect of the upper and (or) lower cladding of a planar waveguide in contact with a side-polished fiber. A microscope cover glass with thickness of a 170 ${\mu}{\textrm}{m}$ is adopted as an overlay waveguide because this waveguide opposes sudden temperature change and ensures polarization-insensitive responses. The measured polarization-dependence loss is less than 0.3 dB. The temperature can be detected as a result of the shift in coupling wavelength of the sensor. We investigate the shift in coupling wavelength as a function of the temperature variation with respect to the different thermo-optic coefficients of lower and upper claddings. We also show that the temperature sensitivity of the device can be easily controlled by the thermo-optic coefficients of lower and upper claddings of the overlay waveguide.