• 제목/요약/키워드: Thermo-mechanical characteristics

검색결과 223건 처리시간 0.031초

유기랭킨사이클(ORC)을 위한 주전열면 열교환기의 채널 종횡비에 따른 유동 및 열전달 특성 (EFFECTS OF CHANNEL ASPECT RATIO ON FLOW AND HEAT TRANSFER CHARACTERISTICS OF PRIMARY SURFACE HEAT EXCHANGER FOR ORC)

  • 성민제;안준
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.35-40
    • /
    • 2013
  • A series of numerical simulation has been carried out to study thermo-hydraulic characteristics of a primary surface type heat exchanger, which is designed for the evaporator and condenser of a geothermal ORC. Working fluid is geothermal water at hot side and R-245fa, which is a refrigerant designed for ORC, at cold side. Aspect ratio of the channel and Reynolds number are considered as design parameters. Nusselt number is presented for the Reynolds number ranging from 50 to 150 and compared to existing correlations. The result shows that higher aspect ratio channel gives better heat transfer performance within the range of investigation.

의류 건조기 내의 유동 계측 (Flow Measurement in a Clothes Dryer)

  • 명환주;윤상헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.175-178
    • /
    • 2001
  • In a clothes dryer, various thermo-fluid flow phenomena occur such as the heat and mass transfer in the process of removing moisture from clothes, the flow field generated by the fan, and the various flow characteristics from the complex flow paths. The study and understanding of such phenomena is an important factor in increasing the performance of dryers. In this study, as part of a dryer research, the flow field inside a vented dryer was measured using PIV, which the result will be used as the basic material in analyzing the various flow phenomena.

  • PDF

열광학 효과를 이용한 파장 가변 필터의 특성 (Characteristics of Tunable Filter Using the Thermo-optic Effect)

  • 박헌용;황병철;이승걸;오범환;이일항;박세근;최두선
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.114-115
    • /
    • 2003
  • 최근 급속히 성장하고 있는 Wavelength-division-multiplexing (WDM) 시스템에 파장가변 필터는 핵심적인 소자로 적용될 수 있으며, 높은 가격 경쟁력과 광학 필터로서 좋은 특성과 높은 가변 특성을 구현할 수 있다. 이러한 파장가변 필터는 multi-beam 간섭을 이용하고, Micro electro mechanical systems (MEMS) 공정 기술인 벌크 마이크로 머시닝 기술을 이용하여 구현되어지고 있다. 또한 파장 가변 필터는 Optical-performance monitoring, Spectrometer, Optical noise filter, Sensor 등 여러 분야에 응용될 수 있다. (중략)

  • PDF

회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구 (Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation

  • Ebrahimi, Farzad;Ehyaei, Javad;Babaei, Ramin
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.245-261
    • /
    • 2016
  • Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-law form. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton principle and Eringen's nonlocal elasticity theory. Navier's method is presented to explore the influences of elastic foundation parameters, various thermal environments, small scale parameter, material composition and the plate geometrical parameters on buckling characteristics of the FG nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples show that the buckling characteristics of the FG nanoplate are related to the material composition, temperature distribution, elastic foundation parameters, nonlocality effects and the different loading conditions.

Nondestructive Characterization and In-situ Monitoring of Corrosion Degradation by Backward Radiated Ultrasound

  • Song, Sung-Jin;Kim, Young H.;Bae, Dong-Ho;Kwon, Sung D.
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.114-119
    • /
    • 2005
  • Since the degradation caused by corrosion is restricted to the surface of materials, conventional ultrasonic nondestructive evaluation methods based on ultrasonic bulk waves are not applicable to characterization of the corrosion degradation. To take care of this difficulty, a new nondestructive evaluation method that uses ultrasonic backward radiation has been proposed recently. This paper explores the potential of this newly developed method for nondestructive characterization and in-situ monitoring of corrosion degradation. Specifically, backward radiated ultrasounds from aged thermo-mechanically controlled process (TMCP) steel specimens by corrosion fatigue were measured and their characteristics were correlated to those of the aged specimens. The excellent correlation observed in the present study demonstrates the high potential of the backward radiated ultrasound as an effective tool for nondestructive characterization of corrosion degradation. In addition, the potential of the backward radiated ultrasound to in-situ monitoring of corrosion degradation is under current investigation.

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.

Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.131-157
    • /
    • 2018
  • In this study, Eringen nonlocal elasticity theory in conjunction with surface elasticity theory is employed to study nonlinear free vibration behavior of FG nano-plate lying on elastic foundation, on the base of Reddy's plate theory. The material distribution is assumed as a power-law function and effective material properties are modeled using Mori-Tanaka homogenization scheme. Hamilton's principle is implemented to derive the governing equations which solved using DQ method. Finally, the effects of different factors on natural frequencies of the nano-plate under hygrothermal situation and various boundary conditions are studied.

Thermal-induced nonlocal vibration characteristics of heterogeneous beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.93-128
    • /
    • 2017
  • In this paper, thermal vibration behavior of nanoscale beams made of functionally graded (FG) materials subjected to various types of thermal loading are investigated. A Reddy shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors is employed. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predict correctly the vibration responses of FG nanobeams. The effects of nonlocal parameter, material graduation, mode number, slenderness ratio and thermal loading on vibration behavior of the nanobeams are studied in detail.

자연대류 경계층의 천이특성에 대한 실험적 연구 (Experimental study of natural transition in natural convection boundary layer)

  • 황성충;요시프 무스타파;임희창
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.29-37
    • /
    • 2022
  • We carried out a laboratory experiment about the thermo-fluidic characteristics of natural convection boundary layer over a vertical heated plate under constant heat flux condition. Particle image velocimetry has been applied to observe the surface convection velocity close to the vertical plate submerged in the water chamber with the condition of Ra = 7 × 109 and Pr = 8.1. The velocity distributions indicate that the distinct stripe-like structures appears in the upstream (earlier transition region) and the distinct negative-positive and Λ(λ)-shaped flow structures in the downstream (mid-transition region). In addition, the temporal variation of spanwise and streamwise velocity is also presented.