• Title/Summary/Keyword: Thermo-mechanical Fatigue Crack

Search Result 17, Processing Time 0.036 seconds

Thermo-Mechanical Fatigue Crack Propagation Behaviors of 1.5Cr-0.67Mo-0.33V Alloy (1.5Cr-0.67Mo-0.33V강의 열피로 크랙전파 거동)

  • 송삼홍;강명수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2133-2141
    • /
    • 1995
  • The thermo-mechanical fatigue tests were performed on the specimens extracted from 1.5Cr-0. 67Mo-0.33V alloy. The characteristics of thermo-mechanical fatigue crack propagation were examined and reviewed in view of fracture mechanics. The results obtained from the present study are summarized as follows : (1) The propagation characteristics of isothermal low-cycle fatigue crack are dominated by .DELTA.J$_{f}$ in case of PP waveform, and .DELTA.J$_{c}$ in case of CP waveform. (II)The propagation characteristics of thermo-mechanical fatigue crack are dominated by .DELTA.J$_{c}$ for in-phase case, and by .DELTA.J$_{c}$ for out-of-phase. The present results were in good agreement with the equation of propagation law for isothermal low-cycle fatigue crack in case of thermo-mechanical fatigue.tigue.e.

Characteristics of Corrosion Fatigue of High Strength Steel for Marine Weld Structure

  • Choi, Seong-Dae;Kubo, Takeo;Misawa, Hiroshi;Lee, Jong-Hyung;Song, Dug-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.53-60
    • /
    • 2003
  • Large sized marine structures are used under corrosion environment of seawater and applied by severe service loading such as an ocean current, a billow and a tempest. Marine structures are usually constructed by lots of thick wall steel pipes joining welded joints. The thickness of such as steel pipes is usually more than 40mm. The such as steels are called "Thermo-Mechanical Control Process steel (TMCP steel)" strengthened by a heat treatment in process of steel manufactures. The failure, especially crack initiation, of marine structures was starting at weld joints under service condition. Then they should be designed by basis of the fatigue strength under seawater corrosion environment of weld joints. To clarity the fatigue crack initiation behavior is important more than to clarify the crack propagation behavior on the strength design of marine structures, because it is very difficult to find out the crack initiation and propagation phenomena and then even if it will be able to find out, it is considered that the refit of the damaged parts of welded joints have a technical difficulty under the sea. Therefore, it is most important to clarify the corrosion fatigue crack initiation behavior under the seawater condition. But, there is one big difficulty to make a test for thick plate specimen, for example thicker than 40mm. Because, it is need large capacity loading apparatus to test such as thick plate specimen. In this research, the new configuration specimen for fatigue crack initiation tests was proposed. Using this new specimen, it is easy to carry out the fatigue clack initiation tests with relatively low cyclic loading and to observe a fatigue crack initiation behavior.

  • PDF

Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography (초음파-적외선 열화상 기법에 의한 피로균열 검출에 있어 발열 메커니즘 분석)

  • Choi, Man-Yong;Lee, Seung-Seok;Park, Jeong-Hak;Kim, Won-Tae;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.10-14
    • /
    • 2009
  • Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity.

Deformation and Failure Behavior during Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy (열기계적 피로에 따른 단결정 니켈기 초내열합금의 변형 및 파괴거동)

  • Kang, Jeong Gu;Hong, Hyun Uk;Choi, Baig Gyu;Kim, In Soo;Kang, Nam Hyun;Jo, Chang Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The out-of-phase thermo-mechanical fatigue (OP TMF) in a <001> oriented single crystal nickel-based superalloy CMSX-4 has been studied. OP TMF life was less than a half of low cycle fatigue(LCF) life in spite of a small hysteresis loop area of OP TMF compared to that of LCF. The failure was caused by the initiation of a crack at the oxide-layered surface followed by its planar growth along the <100> ${\gamma}$ channel in both LCF and OP TMF. However, deformation twins appeared near the major crack of OP TMF. The multiple groups of parallel twin plates on {111} planes provided a preferential path for crack propagation, which caused a significant decrease in OP TMF life. Additionally, the analysis on the surface crack morphology revealed that the tensile strain at the minimum temperature of OP TMF was found to accelerate the crack propagation.

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 케이싱 열피로 균열발생 해석)

  • Kang, M.S.;Yun, W.N.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.52-58
    • /
    • 2009
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Many casing bolts are used to assemble two horizontally separated casings, the gas turbine casing and the compressor casing, in both of axial and vertical directions. Because drilled holes for casing bolts in vertical direction are often too close to drilled holes for casing bolts in axial direction, one can observe cracks in the area frequently during operations of a gas turbine. In this study of the root cause analysis for the cracking initiating from the drilled holes of the casings of a gas turbine, the finite element analysis(FEA) was applied to evaluate the thermal and mechanical characteristics of the casings. By applying the field operation data recorded from combined cycle power plants for FEA, thermal and thermo-mechanical characteristics of a gas turbine are analyzed. The crack is initiated at the geometrical weak point, but it is found that the maximum stress is relieved when the same type of cracks is introduced on purpose during FEA. So, it is verified that the local fracture could be delayed by machining the same type of defects near the hole for casing flange bolts of the gas turbine, where the crack is initiated.

  • PDF

A Study on Fatigue Life Prediction of Welded Joints Through Fatigue Test and Crack Propagation Analysis (피로실험 및 균열진전 해석을 통한 용접부의 피로수명 예측에 관한 연구)

  • Y.C. Jeon;Y.I. Kim;J.K. Kang;J.M. Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.93-106
    • /
    • 2001
  • T-joint and hopper knuckle joint models are typical welded joints in ship structure, which are very susceptible to fatigue damage under service condition. Fatigue test and fracture mechanical analysis were performed on these joints to find out characteristics of fatigue behavior. Unified S-N curve was developed from the test results of these two types of joint using hot spot stress concept, and also propagation life was also estimated using Paris' crack propagation law. Residual stress effect on propagation life was considered in calculating propagation life, as was done with thermo-elasto-plastic FE analysis and residual stress intensity factor calculation. Fatigue life of similar kinds of welded joint could be predicted with this unified S-N curve and fracture mechanical analysis technique.

  • PDF

A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel (Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가)

  • Kim, Deok-Geun;Cho, Dong-Pil;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.

Accelerated Thermo-Mechanical Fatigue Life of Pb-Free Solder Joints for PZT Ceramic Resonator (PZT 세라믹 레조네이터 무연솔더 접합부의 열-기계적 피로 가속수명)

  • Hong, Won-Sik;Park, No-Chang;Oh, Chul-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.337-343
    • /
    • 2009
  • In this study, we optimized Pb-free Sn/Ni plating thickness and conditions were optimized to counteract the environmental regulations, such as RoHS and ELV(End-of Life Vehicles). The $B_{10}$ life verification method was also suggested to have been successful when used with the accelerated life test(ALT) for assessing Pb-free solder joint life of piezoelectric (PZT) ceramic resonator. In order to evaluate the solder joint life, a modified Norris-Landzberg equation and a Coffin-Manson equation were utilized. Test vehicles that were composed of 2520 PZT ceramic resonator on FR-4 PCB with Sn-3.0Ag-0.5Cu for ALT were manufactured as well. Thermal shock test was conducted with 1,500 cycles from $(-40{\pm}2)^{\circ}C$ to $(120{\pm}2)^{\circ}C$, and 30 minutes dwell time at each temperature, respectively. It was discovered that the thermal shock test is a very useful method in introducing the CTE mismatch caused by thermo-mechanical stress at the solder joints. The resonance frequency of test components was measured and observed the microsection views were also observed to confirm the crack generation of the solder joints.