• 제목/요약/키워드: Thermo Mechanical Controlled Process Steel(TMCP)

검색결과 7건 처리시간 0.019초

SM490A TMC 후판강재의 소재 및 용접부 특성에 관한 연구 (A Study on Structural Characteristics of SM490A TMC Thick Steel Plates)

  • 김종락;박양희
    • 한국강구조학회 논문집
    • /
    • 제15권3호
    • /
    • pp.331-339
    • /
    • 2003
  • Thermo Mechanical Control Process(TMCP) 강재는 열간압연시에 압연 온도를 제어하면서 경우에 따라 압연직후 냉각, 열처리하여 안정된 조직으로 압연, 제조된 강재이다. 본 연구에서는 극후판 TMCP강재의 소재특성과 건축구조용 강재로서의 적합성과 특성을 밝히기 위하여 화학성분 및 조직특성, 내력 및 기계적 특성, 사용성 및 인성, 등으로 분류하여 소재특성과 용접특성을 분석하였다. 실험결과, 대상강재는 극후판에서도 설계기준강도를 만족하고 낮은 탄소당량 ($C_{eq}$) 및 용접갈라짐 감수성조성($P_cm$)과 저항복비 등이 확보되었다. 또한, 기준온도(${\pm}0^{\circ}C$)는 물론 $-60^{\circ}C$의 극저온에서도 충분한 충격흡수에너지값으로 양호한 인성의 소재특성을 나타냈고, 용접부에서도 경화현상이 저감되고, 용접부의 인성 및 내력이 충분한 것으로 나타났다.

실드 수중용접의 교계에 관한 연구 (Study on Effect of Underwater Shield Welding)

  • 김민남;오세규;서강태;박정배
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.81-87
    • /
    • 1991
  • In this paper, an attempt has been taken for improving the weldability of wer welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows: 1) The cooling rates resulting from wet wlds with the developed electrode on TMCP steel plate could be lower than that of the non-shieled wet welds. 2) The metallurgical characteristics in umderwater wet welds of TMCP steel plate and the developed electrode could be improved by shielding around weld arc surroundings.

  • PDF

입열량에 따른 FCAW용접부 파괴인성에 미치는 미세조직의 영향 (Evaluation of Fracture Toughness and Microstructure on FCA Weldment According to Heat Input)

  • 신용택;강성원;김명현
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.51-60
    • /
    • 2008
  • This paper is to evaluate fracture characteristics of API 2W Gr.50 TMCP steel weldment typically applied for offshore structures, with the focus on the influence of heat input arising from flux cored arc welding. Based on the results and insights developed from this study, it is found that the toughness for both CTOD and impact exhibits a tendency to decrease as the weld heat input increases. The reheated zone of weldmetal exhibit lower hardness than solidified zone and microstructure that are liable to affect the toughness are acicular ferrite and martensite-austenite constituents (M-A). In particular, M-A is a more effective micro-phase for CTOD toughness than impact toughness.

B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성 (Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

후방복사 초음파를 이용한 TMCP강의 부식피로 손상평가 (Assessment of Degradation by Corrosion Fatigue of TMCP Steel using a Backward Radiated Ultrasound)

  • 김영환;배동호;박진형;유형주;권성덕;송성진
    • 비파괴검사학회지
    • /
    • 제23권4호
    • /
    • pp.349-355
    • /
    • 2003
  • 후방복사 레일리 표면파를 사용하여 부식피로에 의한 재료손상을 평가하였다. $25^{\circ}C$, 3.5 wt.% NaCl 수용액에서 TMCP 강재에 대하여 하중의 크기를 변화시키면서 부식피로 시험을 수행하였다. 각각의 시험편에 대해서 입사각에 따른 후방복사 초음파의 진폭변화를 측정하였다. 후방복사 프로파일이 최대가 되는 입사각으로부터 레일리 표면 탄성파의 속도를 결정하였는데, 부식피로 시험에서 파손수명이 길었던 시험편에서의 표면탄성파의 속도가 더 느렸다. 이 사실은 시험편 표면에 발생한 부식손상이 주로 부식환경에 놓인 시간에 의존함을 의미한다 본 연구에서 얻어진 결과는 후방복사된 레일리 표면 탄성파가 노후 재료의 부식손상을 비파괴적으로 평가하는데 유용한 도구임을 보여주었다.

Nondestructive Characterization and In-situ Monitoring of Corrosion Degradation by Backward Radiated Ultrasound

  • Song, Sung-Jin;Kim, Young H.;Bae, Dong-Ho;Kwon, Sung D.
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.114-119
    • /
    • 2005
  • Since the degradation caused by corrosion is restricted to the surface of materials, conventional ultrasonic nondestructive evaluation methods based on ultrasonic bulk waves are not applicable to characterization of the corrosion degradation. To take care of this difficulty, a new nondestructive evaluation method that uses ultrasonic backward radiation has been proposed recently. This paper explores the potential of this newly developed method for nondestructive characterization and in-situ monitoring of corrosion degradation. Specifically, backward radiated ultrasounds from aged thermo-mechanically controlled process (TMCP) steel specimens by corrosion fatigue were measured and their characteristics were correlated to those of the aged specimens. The excellent correlation observed in the present study demonstrates the high potential of the backward radiated ultrasound as an effective tool for nondestructive characterization of corrosion degradation. In addition, the potential of the backward radiated ultrasound to in-situ monitoring of corrosion degradation is under current investigation.

Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가 (A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel)

  • 김덕근;조동필;오동진;김명현
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.