• Title/Summary/Keyword: Thermal-mechanical characteristics

Search Result 1,968, Processing Time 0.033 seconds

Force Modeling and Machining Characteristics of the Intermittent Grinding Wheels

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.351-356
    • /
    • 2001
  • In the surface grinding operations, the grinding fluid cannot be supplied sufficiently in the cutting zone. Temperature generated in the cutting zone increases rapidly and causes thermal damage such as burning on the surface of a workpiece. To reduce thermal damage, the intermittent grinding wheels, which have an excellent cooling effect, have been applied. This paper describes machining characteristics by using intermittent grinding wheels. The grinding force of the intermittent wheels has been simulated by the SIMULAB, which is a program for simulating dynamic systems. Using the intermittent grinding wheels, the characteristics of grinding force, temperature, surface roughness, and geometric error have been evaluated experimently.

  • PDF

Numerical Analysis of Thermal Characteristics of a Milling Process of Titanium Alloy Using Nanofluid Minimum-Quantity Lubrication (티타늄 합금의 나노유체 극미량 윤활 밀링 공정 열특성에 관한 수치 해석 연구)

  • Kim, Young Chang;Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.253-258
    • /
    • 2017
  • This paper presents a numerical study on the thermal characteristics of a milling process of titanium alloy with nanofluid minimum-quantity lubrication (MQL). The computational fluid dynamics (CFD) approach is introduced for establishing the numerical model for the nanofluid MQL milling process, and estimated temperatures for pure MQL and for nanofluid MQL using both hexagonal boron nitride (hBN) and nanodiamond particles are compared with the temperatures measured by thermocouples in the titanium alloy workpiece. The estimated workpiece temperatures are similar to experimental ones, and the model is validated.

A Study on Thermal Deformation Volume of Motorcycle Brake Disk using Regression Analysis (회귀분석에 의한 모터싸이클 브레이크 디스크의 열변형량에 관한 연구)

  • Ryu, Mi-Ra;Byoun, Sang-Min;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.102-107
    • /
    • 2009
  • The thermal deformation volume of motorcycle break disk was studied using a disk-on-pad type friction tester. Thermal deformation volume of motorcycle break disk have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal deformation volume. In this study, the thermal deformation volume with ANSYS workbench are obtained by application of temperature from mechanical test. From this study, the result was shown that the motorcycle break disk with ventilated hole 3 have the most excellent thermal deformation characteristics. The regression equation with frictional factors which have a trust rate of 95% for prediction of thermal deformation volume of motorcycle break disk was composed.

Temperature increase of the spindle bearing system having a gear on the bearing span (베어링 스팬상에 기어구동축을 갖는 스핀들 베어링 시스템의 열특성에 관한 연구)

  • Choi, Jin-kyung;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 1998
  • High cutting speeds and feeds are essential requirements of a machine tool structure to accomplish its basic function which is to produce a workpiece of the required geometric form with an acceptable surface finish at as high a rate of production as is economically possible. Since the bearings in high speed spindle units are the main heat source of the total cutting system, in this work, the thermal characteristics of the spindle bearing system with a tilting axis were investigated using finite element methods to improve the performance of the spindle bearing system. Based on the theoretical results, a specially designed prototype spindle bearing system has been manufactured. Using the manufactured spindle bearing system, the thermal characteristics were measured. From the comparison of the experimental results with the theoretical ones, it was found that the finite element method predicted well the thermal characteristics of the spindle bearing system.

An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe

  • Boo Joon Hong;Park Soo Yong;Kim Do Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1036-1043
    • /
    • 2005
  • Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was $2.3^{\circ}C$ while that of the copper block of the same outer dimension was $5.9^{\circ}C.$ The minimum thermal resistance of the CAHP was measured to be $0.004^{\circ}C/W.$ In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag.

A Study on Thermal Shock Characteristics of Functionally Gradient Ceramic/Metal Composites (경사기능성 세라믹/ 금속 복합재료의 열충격특성에 관한 연구)

  • Song, Jun-Hee;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2134-2140
    • /
    • 1996
  • This study was carried out to anlayze the heat-resistant characteristics of functionally gradient material(FGM) composed with ceramic and metal. The thermal fracture behavior of plasma-sprayed FGM and conventional coating material(NFGM) was exaimined by acoustic emession technique under heating and cooling. Furnace cooling and rapid cooling tests were used to examine the effect of temperature change under various conditions, respectively. At the high temperature above $800^{\circ}C$, it was shown that FGM gives higher thermal resistance compared to NFGM by AE signal and fracture surface analysis.

A Study on the Influence of the Inclined Angle and Depth of the Substrate on Thermal and Residual Stress Characteristics in the Vicinity of the Repaired Region by a Directed Energy Deposition Process (기저부 경사각과 깊이가 에너지 제어형 용착 공정으로 보수된 영역의 열 및 잔류응력 특성에 미치는 영향 고찰)

  • Kim, Dan-A;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.50-59
    • /
    • 2022
  • The design of the substrate significantly affects the thermal history and the residual stress formation in the vicinity of a repaired region by a directed energy deposition (DED) process. The occurrence of defects in the repaired region depends on the thermal history and residual stress formation. The objective of this study was to investigate the influence of the inclined angle and depth of the substrate on the thermal and residual stress characteristics in the vicinity of a repaired region by a DED process through two-dimensional finite element analyses (FEAs). The temperature and residual stress distributions in the vicinity of the repaired region were predicted according to the combination of the inclined angle and depth of the substrate. The effects of the inclined angle and depth on the depth of the heat affected zone and the maximum value of the residual stress were examined. A proper combination of the inclined angle and depth of the substrate was estimated to decrease the residual stress in the vicinity of the repaired region.

A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methodes (화학적방법과 방사선으로 가교된 저밀도 폴리에티렌의 열적 기계적 및 유전적 특성의 비교연구)

  • 김봉흡;강도열;김정수
    • 전기의세계
    • /
    • v.25 no.2
    • /
    • pp.100-106
    • /
    • 1976
  • A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca.20.deg.C to 320.deg.C and a frequency range of KHZ to MHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking, however, melting and liquidizing temperatures attain rapid increase at the imitiation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation.

  • PDF

Effect of long-term thermal aging on the microstructural and mechanical characteristics of nickel-based alloy weldment (니켈계 합금 용접부의 미세조직 및 기계적 특성에 대한 장기 열적 시효의 영향)

  • Yoo, Seung Chang;Ham, Junhyuk;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • To investigate the effect of long-term thermal aging on the microstructural and mechanical characteristics of weldment made of nickel base alloy and its weld metal, an accelerated heat treatment was applied to simulate the process of long-term thermal aging in the operating condition of nuclear power plant. A representative nickel-based weldment with Alloy 600 and Alloy 182 was fabricated and heat-treated at $400^{\circ}C$ for 1,713 h and 3,427 h to simulate the thermal aging for the period equivalent to 15 and 30 years in operating pressurized water reactors, respectively. The microstructural and mechanical characteristics were analyzed by using optical microscopy, scanning electron microscopy and Vickers microhardness measurement. Changes were observed in precipitation behavior and microhardness of each specimen, and these changes were mainly attributed to the change in precipitated morphology and residual stress across the weld during the thermal aging process.

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.