• Title/Summary/Keyword: Thermal-hydraulic system code

Search Result 164, Processing Time 0.023 seconds

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.

Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER (혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구)

  • Park, Yeon-Ha;Hwang, Do Hyun;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • The domestic innovative power reactor named iPOWER will employ the passive molten corium cooling system(PMCCS) to cool down and stabilize the core melt in the severe accident. The final design concept of the PMCCS is yet to be determined, but the in-vessel retention through external reactor vessel cooling has been also considered as a viable strategy to cope with the severe accident. In this study, the two-phase natural circulation flow established between the reactor vessel and the insulation was simulated using a thermal-hydraulic system code, MARS-KS. The flow path of cooling water was modeled with one-dimensional nodes, and the boundary condition of the heat load from the molten core was defined to estimate the naturally-driven flow rate. The evolution of major thermal-hydraulic parameters were also evaluated, including the temperature and the level of cooling water, the void fraction around the lower head of the reactor vessel, and the heat transfer mode on its external surface.

Impact of Multi-dimensional Core Thermal-hydraulics on Inherent Safety of Sodium-Cooled Fast Reactor (다차원 노심열수력 현상이 소듐고속로 고유안전성에 미치는 영향)

  • Kwon, Young-Min;Jeong, Hae-Yong;Ha, Kwi-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3175-3180
    • /
    • 2008
  • A metal-fueled pool-type liquid metal fast reactor (LMFR) provides large margins to sodium boiling and fuel damage under accident conditions. The favorable passive safety results are obtained by both a reactivity feedback mechanism in the core and a passive decay heat removal system. Among the various reactivity feedbacks, the ones by a thermal expansion of a radial dimension of the core and by the control rod drivelines are strongly dependent on the flow conditions in the core and the hot pool, respectively. The effects of multidimensional thermal hydraulic characteristics on these reactivity feedbacks are investigated by the system-wide safety analysis code SSC-K with advanced thermal hydraulics models. Particularly a detailed three dimensional thermal hydraulics reactor core model is integrated into SSC-K for use in a whole system analysis of the passive safety aspects of LMR designs. The model provides fuel and cladding temperatures for every fuel pin in a reactor and coolant temperatures for every coolant sub-channel in the reactor.

  • PDF

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

Thermal-Mixing Analyses for Safety Injection at Partial Loop Stagnation of a Nuclear Power Plant

  • Hwang, Kyung-Mo;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1380-1387
    • /
    • 2003
  • When a cold HPSI (High pressure Safety Injection) fluid associated with an overcooling transient, such as SGTR (Steam Generator Tube Rupture), MSLB (Main Steam Line Break) etc., enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters the downcomer of the reactor pressure vessel, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. As general thermal-hydraulic system analysis codes cannot properly predict the thermal stratification phenomena, RG 1.154 requires that a detailed thermal-mixing analysis of PTS (pressurized Thermal Shock) evaluation be performed. Also. previous PTS studies have assumed that the thermal stratification phenomena generated in the stagnated loop side of a partially stagnated primary coolant loop are neutralized in the vessel downcomer by the strong flow from the unstagnated loop. On the basis of these reasons, this paper focuses on the development of a 3-dimensional thermal-mixing analysis model using PHOENICS code which can be applied to both partial and total loop stagnated cases. In addition, this paper verifies the fact that, for partial loop stagnated cases, the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is almost neutralized by the strong flow of the unstagnated loop but is not fully eliminated.

Development of MARS Transient Analyzer

  • Hwang, M.K.;Kim, K.D.;Jeong, J.-J.;Lee, Y.J.;Chung, B.D.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.10a
    • /
    • pp.155.2-155
    • /
    • 2002
  • A visual environment for system analysis codes (hereinafter called "ViSA") has been developed to support code users in their input preparations, code executions, and output interpretations. ViSA provides a more convenient way for base input data generation and modification on a user-friendly basis. It also provides on-line graphical displays to give an in-depth understanding of transient thermal-hydraulic behaviors in nuclear power plants. This paper presents the main features of ViSA.

  • PDF

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

  • Hedayat, Afshin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.953-967
    • /
    • 2017
  • In this paper, a complete station blackout (SBO) or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR). The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank), safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal-hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.

Analysis of LOFT LP-02-6 Experiment Using RELAP5/MOD3.2

  • Park, Tong-Soo;Lee, Jae-Hoon;Park, Byung-Suh;Cho, Chang-Sok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.357-362
    • /
    • 1996
  • LOFT LBLOCA test, LP-02-6 was analyzed using RELAP5/MOD3.2. It has a distinguished thermal-hydraulic phenomenon of a positive bottom-up core flow in tile blowdown phase. A modified nodalization which is based on that used in LP-LB-1 calculation by Lubbesmeyer was used in the calculation. RELAP5/MOD3.2 predicted overall system hydraulic behavior relatively well. However, the bottom-up quenching in the middle part of the core was not predicted sufficiently. It was demonstrated also that the peak cladding temperature can be predicted well by adjusting a discharge coefficient. But more improvements are needed in order to apply this code to actual plants with less user dependency.

  • PDF