• 제목/요약/키워드: Thermal-hydraulic feedback

검색결과 15건 처리시간 0.021초

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

Modeling and simulation of VERA core physics benchmark using OpenMC code

  • Abdullah O. Albugami;Abdullah S. Alomari;Abdullah I. Almarshad
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3388-3400
    • /
    • 2023
  • Detailed analysis of the neutron pathway through matter inside the nuclear reactor core is exceedingly needed for safety and economic considerations. Due to the constant development of high-performance computing technologies, neutronics analysis using computer codes became more effective and efficient to perform sophisticated neutronics calculations. In this work, a commercial pressurized water reactor (PWR) presented by Virtual Environment for Reactor Applications (VERA) Core Physics Benchmark are modeled and simulated using a high-fidelity simulation of OpenMC code in terms of criticality and fuel pin power distribution. Various problems have been selected from VERA benchmark ranging from a simple two-dimension (2D) pin cell problem to a complex three dimension (3D) full core problem. The development of the code capabilities for reactor physics methods has been implemented to investigate the accuracy and performance of the OpenMC code against VERA SCALE codes. The results of OpenMC code exhibit excellent agreement with VERA results with maximum Root Mean Square Error (RMSE) values of less than 0.04% and 1.3% for the criticality eigenvalues and pin power distributions, respectively. This demonstrates the successful utilization of the OpenMC code as a simulation tool for a whole core analysis. Further works are undergoing on the accuracy of OpenMC simulations for the impact of different fuel types and burnup levels and the analysis of the transient behavior and coupled thermal hydraulic feedback.

Simulations of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system

  • Yu, Jiankai;Lee, Hyunsuk;Kim, Hanjoo;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.661-673
    • /
    • 2020
  • The quarter-core simulation of BEAVRS Cycle 2 depletion benchmark has been conducted using the MCS/CTF coupling system. MCS/CTF is a cycle-wise Picard iteration based inner-coupling code system, which couples sub-channel T/H (thermal/hydraulic) code CTF as a T/H solver in Monte Carlo neutron transport code MCS. This coupling code system has been previously applied in the BEAVRS benchmark Cycle 1 full-core simulation. The Cycle 2 depletion has been performed with T/H feedback based on the spent fuel materials composition pre-generated by the Cycle 1 depletion simulation using refueling capability of MCS code. Meanwhile, the MCS internal one-dimension T/H solver (MCS/TH1D) has been also applied in the simulation as the reference. In this paper, an analysis of the detailed criticality boron concentration and the axially integrated assembly-wise detector signals will be presented and compared with measured data based on the real operating physical conditions. Moreover, the MCS/CTF simulated results for neutronics and T/H parameters will be also compared to MCS/TH1D to figure out their difference, which proves the practical application of MCS into the BEAVRS benchmark two-cycle depletion simulations.

증기발생기 수위조절 시스템의 디지탈화 (Digitalization of the Nuclear Steam Generator Level Control System)

  • Lee, Yoon-Joon;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.125-135
    • /
    • 1993
  • 안전하고 효율적인 원자력 발전소의 운전은 디지탈 기술을 이용한 발전소 자동화로 이루어질 수 있다는 인식과 함께 이같은 발전소 자동화는 차세대 원자력 발전소의 중요한 목표중의 하나가 되고 있다. 전체적인 발전소 수준의 자동화를 위해서는 일차적으로 각 주요 시스템에 대한 디지털화가 요구되며 본 논문에서는 증기발생기의 수위조절 시스템에 대해 연구하였다. 이를 위해 증기발생기의 열수력학적 모델을 이용하여 증기발생기에 작용하는 여러가지 입력과 수위와의 관계를 전달함수로 표시하였으며 이를 이용하여 기존의 발전소에서 사용되고 있는 3 요소 제어시스템을 검토하였다. 본 논문에서의 제어구성은 증기발생기 그 자체를 시스템내에 플랜트로서 포함시킨 것이기 때문에 전체적인 시스템 차수가 증가하며 디지탈 과정중 수치적 불안정이 야기된다. 이러한 문제와 아울러 저출력에서는 궤환신호로 작용하는 급수유량의 신뢰도가 작음을 고려하여 2 요소 제어시스템 및 그에 따른 디지탈 제어기에 대해 연구하였다. 이 시스템의 디지탈 비례적분제어기는 그 이득 및 적분시간상수가 초기출력에 따라 변하며 전체적인 시스템의 응답특성이 안정성 및 기타 제어 특성을 동시에 만족시키도록 하고 있다. 이러한 제어기를 사용한 2 요소 제어시스템은 초기출력에만 의존하므로 정의하기가 간단하며 또 이러한 시스템의 수위응답은 그에 대응하는 아날로그 시스템의 결과와 비슷함을 보이고 있다.

  • PDF