• Title/Summary/Keyword: Thermal-Fluid Analysis

Search Result 808, Processing Time 0.028 seconds

High-Temperature Heat-Pipe Type Solar Thermal Receiver (고온용 히트파이프형 태양열 흡수기)

  • Boo, Joon-Hong;Jung, Eui-Guk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.668-671
    • /
    • 2007
  • A numerical study was conducted on a simplified model of a high-temperature solar receiver which incorporates liquid-metal heat pipe. The objective of this paper is to compare the isothermal characteristics of the heat pipe receiver with the conventional receiver utilizing convection of molten salt as heat carrier. The solar receiver was assumed to be subject to a concentration ratio between 50 and 1,000 to supply high-temperature heat to a stirling engine for electric power generation. For simplicity of the analysis, a cylindrical geometry was assumed and typical dimensions were used based on available literature. The heat pipe had a shape of double-walled cavity and the working fluid was a sodium. The analysis was performed assuming that the radiation heat flux on the inner walls of the receiver was uniform, since the focus of this study was laid on the comparison of the conventional type and heat pipe type receiver. The results showed that the heat pipe type exhibited superior performance when the operating temperature becomes higher. In addition, to explore the advantage of the heat pipe receiver, the channel shape and dimensions should be adjusted to increase the heat transfer area between the wall and the heat trnasfer medium.

  • PDF

Study on the Multi-measuring Method for Evaluation of Internal Leak of Power Plant Valve (발전용 밸브누설 평가를 위한 다중계측 연구)

  • Lee, S.G.;Park, S.K.;Park, J.H.;Kim, K.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.35-40
    • /
    • 2007
  • Leak would happen because of the damage of high temperature and high-pressure valve in nuclear power plant. condition based prevention maintenance is essential by using the suitable method based on local condition. Energy loss prevention can prevent from an accurate test, Local actually and ability. The methods of test for high energy fluid leak at present are analysis of ${\Delta}T$, AE(Acoustic Emission) analysis, and thermal image. The result for test of secondary system in nuclear power plant Unit reveals that the AE occurred clearly in leakage situation, but thermal image didn't occur. It is identified that leak is occurred when the orifice located front and back of valve operates. It shows that making a impatient judgment by using the single method if it is leakage is containing uncertainty. So we think that using the Multi-Measuring method is more sound judgment than single-measuring method.

  • PDF

Study on Thermal Stress and Flow Analysis at Exhaust Manifold of Car (자동차 배기 매니폴드에 있어서의 열응력과 유동해석에 관한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • This study investigates fluid flow and thermal stress at automotive exhaust manifolds as model 1 and 2. The maximum displacements happen at joint part connected with 4 pipes and upper middle of both parts in cases of model 1 and 2 respectively. At inner surface of the part connected with engine, maximum equivalent stresses of 991.85 and 698.96 MPa are shown in cases of model 1 and 2 respectively. As maximum velocities at the outlet at model 1 are shown at 19.46 and 14.61 m/s in cases of model 1 and 2 respectively, model 1 has more pressure drop than model 2. As result, model 2 has less pressure drop than 1. Model 2 has less deformation and stress than model 1. Model 2 has also less pressure drop than model 1. Therefore model 2 has more strength durability than model 1. This study result is applied with the design of safe automotive manifold and it can be useful to improve the durability by predicting prevention against the deformation due to exhaust gas.

Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model (3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가)

  • Park, Moon-Seo;Lee, Chul-Ho;Min, Sun-Hong;Kang, Shin-Hyung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Chemical Equilibrium Flow and Performance Analysis of the Arcjet Thruster with Ionization Effects (이온화를 고려한 Arcjet 추력기의 화학 평형 유동 및 성능해석)

  • Shin Jae-Ryul;Oh Se-Jong;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.132-135
    • /
    • 2005
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant hydrazine $(N_2H_4)$ as a working fluid. Coupled Reynolds Averaged Navier-Stokes (RANS) equations and Maxwell equations were used to account for the Ohm heating and Lorentz forces. ionization and thermal radiation effects were also incorporated to the fluid dynamic equations by assuming infinitely-fast reactions and optically thick media. In addition to the thermo-physical understandings of the flow field inside the arcjet thruster, results shows that performance indices are improved by amount of 20% in thrust and 70% in specific impulse with the 0.6kW are heating.

  • PDF

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

Heat and Fluid Flow Analysis on the Effect of Crucible Heat Conductivity and Flow Rate of Ar to Solidification of Polycrystalline Silicon Ingot (다결정 Si ingot 응고 시 도가니 열전도도 및 Ar 유입량 변화에 대한 열유체 해석)

  • Shin, Sang-Yun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.276-283
    • /
    • 2012
  • This study presents the results on the changes of crucible thermal conductivity and inflow of Ar, and constructed the mathematical model about heat transfer into furnace. As process variables, simulation model was designated thermal conductivity of crucible to $0.5W{\cdot}m^{-1}{\cdot}K^{-1}$, $1W{\cdot}m^{-1}{\cdot}K^{-1}$, $2W{\cdot}m^{-1}{\cdot}K^{-1}$, $4W{\cdot}m^{-1}{\cdot}K^{-1}$, and inflow rate of Ar to 15 L/min, 30 L/min, 60 L/min. Initial condition and boundary condition were set respectively in two terms of process. Each initial conditions were set up by the preceding simulation of heat and fluid flow. The primary goal is the application of unidirectional growth of Si ingot using the result. In the result of the change of heat conductivity of crucible, the higher thermal conductivity of crucible shows the shorter solidification time and the bigger temperature difference. And the flow patterns are changed with the inflow rate of Ar. Finally, we found that the lower crucible's thermal conductivity, the better crucible is at polycrystalline Si ingot growth. But in case of Ar inflow, it is hard to say about good condition. This data will be evaluated as useful reference used in allied study or process variable control of production facilities.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.