• Title/Summary/Keyword: Thermal-Comfort

Search Result 700, Processing Time 0.022 seconds

The Effect of Pre-warming for Patients under Abdominal Surgery on Body Temperature, Anxiety, Pain, and Thermal Comfort (Forced-air Warming System을 이용한 수술 전 가온이 복부 수술 환자의 체온, 불안, 통증 및 온도 편안감에 미치는 효과)

  • Park, Ok-Bun;Choi, Hee-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.40 no.3
    • /
    • pp.317-325
    • /
    • 2010
  • Purpose: The purpose of this study was to examine the effect of pre-warming on body temperature, anxiety, pain, and thermal comfort. Methods: Forty patients who were scheduled for abdominal surgery were recruited as study participants and were assigned to the experimental or control group. For the experimental group, a forced air warmer was applied for 45-90 min (M=68.25, SD=15.50) before surgery. Body temperature and anxiety were measured before and after the experiment, but pain and thermal comfort were assessed only after the surgery. Hypotheses were tested using t-test and repeated measured ANOVA. Results: The experimental group showed higher body temperature than the control group from right before induction to two hours after surgery. Post-operative anxiety and pain in the experimental group were less than those of the control group. In addition, the score of thermal comfort was significantly higher in the experiment group. Conclusion: Pre-warming is effective in maintaining body temperature, lowering sensitivity to pain and anxiety, and promoting thermal comfort. Therefore, pre-warming can be recommended as a preoperative nursing intervention.

Comparison of Thermal Comfort Performance Indices for Cooling Loads in the Lecture Room - An Correlation of PMV Bnd EDT - (강의실에서의 냉방부하에 따른 열쾌적성 평가지표 비교 - PMV와 EDT의 연관성 -)

  • Noh Kwang-Chul;Oh Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.868-877
    • /
    • 2005
  • We performed the experimental and the numerical study on the comparison of thermal comfort performance indices for cooling loads in the lecture room for 4 cases: Fan coil unit(FCU) or 4-way cassette air-conditioner is respectively operated with the ventilation system or without. We measured the velocity, the temperature distribution and predicted mean vote(PMV) value in the lecture room for 4 different air-conditioning methods. Effective draft temperature(EDT) and PMV were investigated to analyze the characteristics of two thermal comfort indices in the lecture room and to compare their values each other. From the results we knew that there is the similarity between PMV values and EDTs when the room is air-conditioned for cooling loads. It turned out that definition of the control temperature is very important when the EDT is calculated. Finally EDT should not be used to predict the accurate thermal comfort in case that the temperature and humidity are suddenly varied and the zone affected by the solar and inner wall radiation.

A Study of Thermal Comfort by Winter Temperature Humidity Change (겨울철 온도 및 습도변화에 따른 온열쾌적감에 관한 연구)

  • Kim, Se-Hwan;Lee, Sung;Kim, Dong-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.803-809
    • /
    • 2007
  • To those who spend most time within a room, comfortable indoor environment is a very critical element to job performance and health. The comfort technology, which is for enhancing comfort in human living, relates with various factors to ensure human activities efficient, comfortable, safe and satisfactory. Experiments were performed in environmental chamber. Experimental conditions were combinations from three temperatures of 18, 22 and 26C, and two relative humidity levels of 45 and 60%. Air-flow was controlled to 0.1m/s through the experiment. Four male and four female university students participated in the experiments. They had normal blood pressure and their body temperature was under $37^{\circ}C$. From the experiments for evaluating thermal sensation to the air-heating conditions, relationships among TSV, CSV, $SET^*$, PMV were analyzed. Results can be summarized as followings; Thermal neutrality $SET^*$ of man and female was $24.8^{\circ}C$. In air-heating condition, $SET^*$ values for thermal comfort zone were $23.0{\sim}26.5^{\circ}C$. These values were higher than the values from ASHRAE.

Comparison of Cooling Effects by Body Part to Increase Thermal Comfort (열적 쾌적성 증대를 위한 부위별 냉각 효과 비교)

  • Soyoung Park;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.501-510
    • /
    • 2024
  • This study aimed to compare the cooling effect of specific body parts to increase workers' thermal comfort. The parts to be cooled comprised the head and neck; the coolant was a phase change material. The participants were ten men in their 20s of average size according to the 8th Size Korea. The experiment was conducted under the following conditions: 28.0 ± 0.5℃, 60.0 ± 5.0% RH, and 0.2 ± 0.1m/s. The exercise consisted of participants moving for 15 min at a constant speed of 80 BPM; later, a subjective sensation was performed, and the clothing surface temperature was measured. In doing so, heat, wetness, and discomfort after exercise were confirmed to have increased without a coolant. Significant differences over time appeared only when no coolant was used, showing that thermal comfort decreased. Despite the addition of coolant, the clothing surface temperature gradually increased over time, but it decreased with coolant rather than without it. Therefore, additional coolant areas, a lower temperature, and simultaneous cooling convection were required to improve thermal comfort.

Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling (급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경)

  • 김요셉;김영일;유호선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

A Study of Physiology Signal Change by Air Conditioner Temperature Change (에어컨 온도변동에 따른 생리신호 변화에 관한 연구)

  • Kum, Jong-Soo;Kim, Dong-Gyu;Kim, Hyung-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.502-509
    • /
    • 2007
  • This study evaluates thermal comfort by air conditioner temperature raising at the point of time that human body begins to adapt. Thermal comfort according to change of time enters by uncomfortable area gradually at general cold room temperature that magnetic pole is in human body. However, can know that keep continuous thermal comfort in case raise temperature in human body adaptation visual point. Experiments were performed in environmental chamber. Subjects were selected 4 men and 4 women whose life cycle were proved that are similar. The subjects stay in the pretesting room during the 30 minutes and enter the testing room under each experiment conditions. During the experiment, brain wave, electrocardiogram, blood pressure and thermal comfort and sensation responses were measured. In this study, physiological and psychological responses correspond under temperature raising at human body adaptation.

Seasonal Comparison in Thermal Comfort of the Human Body (인체 열쾌적성의 계절 비교)

  • Jeong, Woon-Seon
    • The Korean Journal of Community Living Science
    • /
    • v.21 no.4
    • /
    • pp.633-639
    • /
    • 2010
  • This study was carried out to compare human thermoregulatory responses and preferred air temperature by feet immersion between summer and winter in terms of thermal comfort. Five healthy female university students participated in the study as subjects. They experienced feet immersion at $40^{\circ}C$ of water in the climatic chamber of $24^{\circ}C$, 50%RH from 19:30 to 21:00 in the summer and winter, respectively. Rectal temperature gradually decreased and maintained $0.08^{\circ}C$ lower in winter than summer, while mean skin temperature changed $0.4^{\circ}C$ greater in winter than summer(p=0.00). Air temperature selected by each subject for their thermal comfort revealed $0.8^{\circ}C$ higher in summer than winter(p=0.06). The results obtained suggest an increase in human thermoregulation and be used as preliminary data to maintain optimal indoor temperature in summer and winter.

Characteristics of thermal comfort for artificial environment experiment in summer (하계 인공환경실험에서의 온열쾌적특성)

  • 박종일;김경훈;홍희기;민병일;김창주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.368-377
    • /
    • 1998
  • The purpose of this study was to examine theory about indoor thermal comfort-environment as well as to determine thermal sensation and physiological responses for men in summer indoor environment, under various air temperature and relative humidity, with male university students. Subjective Evaluation, Heart Rate(Electrocardiogram), Electroencephalogram(EEG) were examined. We found that comfort of people was achieved at SE $T^{*}$ 24.7$^{\circ}C$, -0.82<PMV<0.93, subject's clothing(0.41c1o)and the difference of skin temperature was found at the calf area as air temperature changes. At low SE $T^{*}$, heart rate was decreased and at high SE $T^{*}$, heart rate was increased but there was no change EEG(keeping $\alpha$-wave).wave).

  • PDF

The Study for Evaluation of Thermal Comfort in Passenger Cabin on Cruise Ship (크루즈선 객실의 공조 쾌적성 평가에 관한 연구)

  • Koo, Keun-Hae;Lee, Ho-Ki;Choi, Jae-Woong;Lee, Jae-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.62-66
    • /
    • 2011
  • The present work focuses on the evaluation of thermal comfort in passenger cabin of a cruise ship. A computational fluid dynamics (CFD(Airpak)) is used to calculate air velocity and temperature distribution in the passenger cabin as well as PMV and PPD. The CFD is used to simulate two different cases, room unit system and wardrobe duct system. Both of cases are simulated in summer environment condition. The room unit system and wardrobe duct system are compared and evaluated by ISO 7730 thermal comfort categories. The performance of room unit system is shown to be more effective for this typical case of passenger cabin.

Evaluation of Thermal Environments during the Heat Waves of Summer 2013 in Busan Metropolitan Area (2013년 부산지역 폭염사례일의 열쾌적성 평가)

  • Kim, Young-Jun;Kim, Hyunsu;Kim, Yoo-Keun;Kim, Jin-Kuk;Kim, Yeon-Mai
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1929-1941
    • /
    • 2014
  • Now a days, frequency of abnormally high temperatures like heat wave by global warming and climate change is increasing constantly and the number of patient with heat related illness are jumping rapidly. In this study, we chose the case day for the heat wave in Busan area(Busan and Yangsan), 2013 which it was the most hottest year during 21th century. And then, we analysed the weather condition using automatic synoptic observing system(ASOS) data. Also, four indices, heat index(HI), wet bulb globe temperature(WBGT), Man-ENvironment heat EXchange model(MENEX)'s results like Physiological subjective temperature(PST), Physiological strain(PhS), were calculated to evaluate the thermal comfort and stress quantitatively. However, thermal comfort was different as the each station and thermal comfort index during same time. Busan's thermal indices (HI: hot, WBGT: sweltering, PST: very hot, PhS: very hot) indicated relatively higher than Yansan's (HI: very hot, WBGT: sweltering, PST: very hot, PhS: sweltering). It shows that Busan near coast is relatively more comfortable than Yangsan located in inland.