• Title/Summary/Keyword: Thermal-Comfort

Search Result 700, Processing Time 0.025 seconds

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

A Study on the Analysis and Verification of Evaluation system for the Usability Evaluation of Purpose-Based XR Devices (목적 기반 XR 디바이스의 사용성 평가를 위한 평가체계 분석 및 검증 연구)

  • Young Woo Cha;Gi Hyun Lee;Chang Kee Lee;Sang Bong Lee;Ohung Kwon;Chang Gyu Lee;Joo Yeoun Lee;JungMin Yun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.56-64
    • /
    • 2024
  • This study aims to compare and evaluate the usability of domestic and overseas XR devices. With the recent release of 'Apple Vision Pro', interest in the XR field is increasing rapidly. XR devices are being used in various fields such as defense, medical care, education, and entertainment, but the evaluation system for evaluating usability is still insufficient. Therefore, this study aims to derive improvements in domestic equipment through comparative evaluation of usability for two HMD-type devices and one glasses-type device that are released. In order to conduct the study, 20 participants in their 20s to 30s who were interested in XR devices and had no visual sensory organ-related disabilities were evaluated by wearing VR equipment. As a quantitative evaluation, electromyography through an EMG sensor and the device and body temperature of the device through a thermal imaging camera were measured. As a qualitative evaluation, the safety of wearing, ease of wearing, comfort of wearing, and satisfaction of wearing were evaluated. As a result of comparing the usability of the devices based on the results, it was confirmed that domestic HMD-type device needs improvement in the strap part.

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

Effect of Thermal Environment and Illuminance on the Occupants Works based on the Electroencephalogram and Electrocardiogram Analysis (뇌파와 심전도 분석을 기반으로 한 온열환경 및 조도가 재실자의 업무에 미치는 영향)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.95-106
    • /
    • 2014
  • This research analyzed biosignals associated with the change of emotion from lighting felt by the occupants and task type under various indoor thermal environments and illuminance, and examined the biosignals' impacts on work. To this end, the indoor thermal environment was constructed on the basis of PMV (predicted mean vote) index value, and various indoor environments were created by changing the brightness of LED stands. In this manner, a variety of indoor environments were constructed, and experiments were carried out. This research evaluates the sensibility response to lighting through a questionnaire survey in the given environment and incorporates different types of error searches. In this way, changes were analyzed by measuring electroencephalogram (EEG) and electrocardiograms (ECG). As a result, all biosignals on the task type showed significant differences from the thermal environment change. When PMV index value was 0.8 (temperature: $25^{\circ}C$, humidity: 50 %), concentration and attention were the most activated. However, the biosignals did not show significant differences from the illuminance change. Concentration on an occupant's work capability was confirmed to be closely related to the thermal environment. As for the subjective emotional response to lighting, the occupants felt comfort as illuminance was lower, while they felt discomfort as illuminance was higher. However, there were no significant differences from the thermal environment change.

An Analysis of Thermal Comforts for Pedestrians by WBGT Measurement on the Urban Street Greens (도심 가로 녹음의 습구흑구온도(WBGT) 측정을 통한 보행자 열쾌적성 효과 분석)

  • Ahn, Tong-Mahn;Lee, Jae-Won;Kim, Bo-Ram;Yoon, Ho-Seon;Son, Seung-Woo;Choi, Yoo;Lee, Na-Rae;Lee, Ji-Young;Kim, Hae-Ryung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.22-30
    • /
    • 2013
  • This study aims to measure the thermal comfort effects of urban street trees. As the usual dry bulb air temperature does not indicate properly how the average pedestrian feels the heat of a typical summer day under the strong sunshine, we adopted the Wet Bulb Globe Temperature(WBGT). WBGT involves black globe temperature to measure the direct radiation of sun beams on our bodies, for example our heads. We measured temperatures on very sunny and hot summer days, August 3, 4, and 7, 2012, on the urban streets of Seoul, Korea. Wet bulb, globe, and dry bulb temperatures were measured under direct sunlight from 1 O'clock to 5 O'clock pm. Globe and dry bulb temperatures were measured under street tree shades nearby during the same hours. Then the WBGTs were calculated with the formulae, one for sunny outdoor spaces, and the other for shaded outdoor spaces or indoor. The results are compared with the Korean Standards Association(KS A ISO 7243). The major findings were: 1) On very sunny and hot summer days in Seoul, street tree shades lower the WBGT about 1 to 4 degrees, 2) during the hours of 3 and 4 O'clock in the afternoon, the WBGT under the tree shades are about 3 to 4 degrees lower compared to those under sunshines(approx. 29 to 32 degrees respectively), 3) This difference makes a major thermal comfort for urban pedestrians because senior citizens or weak persons are recommended to move indoor, and even healthy people are recommended stop outdoor sports and take rests in the shades when WBGT is about 32. On the other hand, if the WBGT is around 29, or 3 degrees lower, slower walking, light works or sports are allowable, 4) On site questionnaire survey confirms the thermal comforts under the tree shades, and we even could not get survey subjects on the sunny parts of the sidewalks, 5) We strongly recommend change of guidelines for urban street trees from "one row of street trees on 6m~8m intervals" to "street trees to make continuous shades".

Assessment on Thermal Transmission Property of Wall Through a Scaled Model Test (축소모형 실험을 통한 벽체의 열관류 측정)

  • Chang, Yoon-Seong;Kim, Sejong;Shim, Kug-Bo;Lee, Sang-Joon;Han, Yeonjung;Park, Yonggun;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.884-889
    • /
    • 2015
  • Appropriate evaluation of thermal insulation property of structural member and valid control of cooling/heating energy are important for improving building's energy efficiency. The typical heating system of house in Korea is the floor heating one. The radiation heating system is not only appropriate to climate and geographic conditions of Korea, but also advantageous to provide emotional comfort by the warm feeling of floor. Based on living conditions in Korea, scaled models of the wooden house and concrete house were designed. The ceiling was made of styrofoam insulation and the four sided walls and bottom were made of plywood and concrete, respectively. The floor was heated by heating film. Indoor vertical temperature distributions by floor heating system were measured by thermocouple, and surface temperatures on walls were measured by infrared thermography. Also, thermal insulation property of wooden wall was evaluated to build database for improving energy efficiency of wooden building. It is expected that collected data during tests of various types of floor and wall composition could be referenced for evaluating thermal environment of actual conditions of houses.

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.

Physiological Responses and Subjective Sensation of Human Body Wearing OnMapsi in Heating Environment (난방환경에서 온(溫)맵시 착용에 따른 생리적 반응 및 주관적 감각)

  • Na, Young-Joo;Lee, Ji-Yun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • This study tests the performance of the recommended winter dress OnMapsi for an office worker through the analysis of skin temperature changes according to the heating environment. We tested and compared the effects of with/without undergarments for 4 male subjects in an artificial-climate chamber with two air temperatures of $19^{\circ}C$ and $22^{\circ}C$, $50{\pm}10%$ R.H. During the 60 minute experiment that simulated office work, the subjective feelings (that included thermal, humidity and comfort sensation, and skin temperature) were measured at equal intervals. The results show that the forehead and chest skin temperatures were not affected by air temperature or clothing type, while the hand and foot skin temperatures were affected at $0.3-0.9^{\circ}C$ depending on clothing type and $1.9-2.2^{\circ}C$ depending on air temperature. The mean skin temperature was decreased by the experimental time pass more with regular formal wear than with OnMapsi. The second experiment located the ambient temperature in which subjects wearing OnMapsi show equal skin temperaturesto those without undergarments at $22^{\circ}C$. Therefore it is possible to decrease heating temperatures to $18-21^{\circ}C$ in the office for winter OnMapsi wear that produces a skin temperature and thermal sensation that is the same as those at $22^{\circ}C$.

Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West- (역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

An Experimental Study on the Thermal Physiological Response in the Pesticide Proof Clothing Textile Materials for a Fruit-grower (과수용 농약방제복 소재 특성에 따른 인체생리반응에 관한 연구)

  • Hwang, Kyoung-Sook;Kim, Kyung-Ran;Lee, Kyung-Suk;Kim, Hyo-Cher;Baek, Yoon-Jeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.11
    • /
    • pp.1792-1801
    • /
    • 2008
  • This study was to develope the pesticide-proof clothes(PPC) for fruit-grower which has been well known over applied agricultural chemicals. The ergonomic evaluation of PPC were tested in two ways. Male adults volunteered the tests to evaluate the safety to pesticide in the field and the thermal comforts in the climate-chamber($30^{\circ}C$, 60%R.H.). PPC were made of 4 different fabrics. Two of them were on the market(coated non-woven and coated nylon). Others were water-repellent treatment and coated waterproof film by developed polyester. The field study was conducted for farmers growing apples to evaluate pesticide exposure. In this experiment, we collected data with patch test on the head, chest, back, right upperarm, right forearm, left thigh and left calf. From the results, the developed PPC showed the more excellent comfort than an existing PPC with nylon coated polyurethane. But the developed PPC of water-repellent fabric was penetrated into the PPC. Therefore, we designed the functional pesticide-proof clothes of 2 different developed polyester fabrics(water-repellent treatment in chest, abdomen, the lower of back, waist, and calf; coated waterproof film in head, shoulder, the upper of back, the crotch, hip, upper arm and thigh).