• Title/Summary/Keyword: Thermal thickness

Search Result 2,082, Processing Time 0.025 seconds

Numerical analysis of FGM plates with variable thickness subjected to thermal buckling

  • Bouguenina, Otbi;Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.679-695
    • /
    • 2015
  • A numerical solution using finite difference method to evaluate the thermal buckling of simply supported FGM plate with variable thickness is presented in this research. First, the governing differential equation of thermal stability under uniform temperature through the plate thickness is derived. Then, the governing equation has been solved using finite difference method. After validating the presented numerical method with the analytical solution, the finite difference formulation has been extended in order to include variable thickness. The accuracy of the finite difference method for variable thickness plate has been also compared with the literature where a good agreement has been found. Furthermore, a parametric study has been conducted to analyze the effect of material and geometric parameters on the thermal buckling resistance of the FGM plates. It was found that the thickness variation affects isotropic plates a bit more than FGM plates.

Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials

  • Arioui, Othman;Belakhdar, Khalil;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.777-788
    • /
    • 2018
  • An investigation on the thermal buckling resistance of simply supported FGM beams having parabolic-concave thickness variation and temperature dependent material properties is presented in this paper. An analytical formulation based on the first order beam theory is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. a function of thickness variation is introduced which controls the parabolic variation intensity of the beam thickness without changing its original material volume. The results showed the high importance of taking into account the temperature-dependent material properties in the thermal buckling analysis of such critical beam sections. Different Influencing parametric on the thermal stability are studied which may help in design guidelines of such complex structures.

Finite Element Analysis of Thermal Behaviours of a Disk Brake in High-Speed Trains (고속 전철에서 디스크 브레이크의 열거동에 관한 유한요소해석)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 1998
  • This paper presents the thermal behaviours of a solid type disk brake for a high-speed train. The thermal behaviours of a brake disk with 50mm thickness shows good performance compared with 45mm thickness of a disk because of a high specific heat capacity. The FEM results show that the thickness of the disk with a same weight of the brake disk should be increased for a good flexibility of the contact thermal problems. Therefore, the ratio between the pad and disk in diameter may be reduced and the thickness of a disk increased.

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation

  • Benlahcen, Fouad;Belakhdar, Khalil;Sellami, Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.591-602
    • /
    • 2018
  • This research presents an investigation on the thermal buckling resistance of FGM plates having parabolic-concave thickness variation exposed to uniform and gradient temperature change. An analytical formulation is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. A specific function of thickness variation is introduced where it controls the parabolic variation intensity of the thickness without changing the original material volume. The results indicated that the loss ratio in buckling resistance is the same for any gradient temperature profile. Influencing geometrical and material parameters on the loss ratio in the thermal resistance buckling are investigated which may help in design guidelines of such complex structures.

Analysis of a Pin Fin with Variable Fin Base Thickness (핀 바닥두께가 변하는 pin 핀의 해석)

  • Kang, Hyung-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.642-645
    • /
    • 2008
  • A pin fin with variable fin base thickness is analysed by using the one dimensional analytic method. Heat loss and fin thermal resistance are presented as a function of the fin base thickness, pin fin outer radius and convection characteristic numbers ratio. The relationship between the fin outer radius and fin base thickness for the same amount of heat loss is shown. One of the results indicates the fin thermal resistance decreases as the fin outer radius and/or convection characteristic numbers ratio increase whereas the fin thermal resistance is independent on the variation of fin base thickness.

  • PDF

Finite Element Analysis of Thermal Behaviours of a Disk Brake in High-Speed Trains (고속 전철에서 디스크 브레이크의 열거동에 관한 유한요소해석)

  • 김청균;조승현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.200-210
    • /
    • 1997
  • This paper presents the thermal behaviours of a solid type disk brake for a high-speed train. The thermal behaviours of a brake disk with 50mm thickness shows good performance compared with 45mm thickness of a disk because of a high specific heat capacity and thermal expansion ratio. The FEM results show that the thickness of the d!sk with a same weight of the brake disk should be increased for a good flexibility of the contact thermal problems. Therefore, the ratio between the pad and disk in diameter may be reduced and the thickness of a disk increased.

  • PDF

Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module (고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

Thermal Fatigue Behavior of Thermal Barrier Coatings by Air Plasma Spray (대기플라즈마 용사법으로 제조된 열차폐코팅의 열피로특성 평가)

  • Lee, Han-sang;Kim, Eui-hyun;Lee, Jung-hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.363-369
    • /
    • 2008
  • Effects of top coat morphology and thickness on thermal fatigue behavior of thermal barrier coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and $300{\mu}m$ respectively. The thickness of top coat was about $700{\mu}m$ in the perpendicular cracked specimen (PCS). Under thermal fatigue condition at $1,100^{\circ}C$, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and thermally grown oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

Effects of Composition, Structure Design, and Coating Thickness of Thermal Barrier Coatings on Thermal Barrier Performance

  • Jung, Sung-Hoon;Jeon, Soo-Hyeok;Lee, Je-Hyun;Jung, Yeon-Gil;Kim, In-Soo;Choi, Baig-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.689-699
    • /
    • 2016
  • The effects of composition, structure design, and coating thickness of thermal barrier coating (TBC) on thermal barrier performance were investigated by measuring the temperature differences of TBC samples. TBCs with the thin and thick top coats were used for these studies, including TBCs with rare-earth (Gd, Yb, and La) compositions. The thermal barrier performance was enhanced with increasing the thickness of top coat even for thin TBCs, indicating that the thermal barrier performance was commensurate to the thickness of top coat. On the other hand, the bi-layered TBC, which was prepared with Yb-Gd-YSZ feedstock powder, with the buffer layer of high purity 8YSZ showed a better thermal barrier performance than that of regular purity 8YSZ. The interfaces in the bi-layered TBCs had a decisive effect on the thermal barrier performance, showing the performance enhanced with increasing numbers of interfaces. However, a new structural design and an additional process should be considered to reduce stress concentrations and to ensure interface stability, respectively, for improving thermal durability in the multi-layered TBCs.