• 제목/요약/키워드: Thermal storage material

Search Result 268, Processing Time 0.029 seconds

Material Life Cycle Assessments on Mg2NiHx-CaO Composites (Mg2NiHx-CaO 수소 저장 복합물질의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.8-18
    • /
    • 2022
  • With rapid industrialization and population growth, fossil fuel use has increased, which has a significant impact on the environment. Hydrogen does not cause contamination in the energy production process, so it seems to be a solution, but it is essential to find an appropriate storage method due to its low efficiency. In this study, Mg-based alloys capable of ensuring safety and high volume and hydrogen storage density per weight was studied, and Mg2NiHx synthesized with Ni capable of improving hydrogenation kinetics. In addition, in order to improve thermal stability, a hydrogen storage composite material synthesized with CaO was synthesized to analyze the change in hydrogenation reaction. In order to analyze the changes in the metallurgical properties of the materials through the process, XRD, SEM, BET, etc. were conducted, and hydrogenation behavior was confirmed by TGA and hydrogenation kinetics analysis. In addition, in order to evaluate the impact of the process on the environment, the environmental impact was evaluated through "Material Life Cycle Assessments" based on CML 2001 and EI99' methodologies, and compared and analyzed with previous studies. As a result, the synthesis of CaO caused additional power consumption, which had a significant impact on global warming, and further research is required to improve this.

Thermocompression Anisothropic Conductive Films(ACFs) bonding for Flat Panel Displays(FPDs) Application (평판디스플레이를 위한 열압착법을 이용한 이방성 도전성 필름 접합)

  • Pak, Jin-Suk;Jo, Il-Jea;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.199-204
    • /
    • 2009
  • The effect of temperature on ACF thermocompression bonding for FPD assembly was investigated, It was found that Au bumps on driver IC's were not bonded to the glass substrate when the bonding temperature was below $140^{\circ}C$ so bonds were made at temperatures of $163^{\circ}C$, $178^{\circ}C$ and $199^{\circ}C$ for further testing. The bonding time and pressure were constant to 3 sec and 3.038 MPa. To test bond reliability, FPD assemblies were subjected to thermal shock storage tests ($-30^{\circ}C$, $1\;Hr\;{\leftrightarrow}80^{\circ}C$, 1 Hr, 10 Cycles) and func! tionality was verified by driver testing. It was found all of FPDs were functional after the thermal cycling. Additionally, Au bumps were bonded using ACF's with higher conductive particle densities at bonding temperatures above $163^{\circ}C$. From the experimental results, when the bonding temperature was increased from $163^{\circ}C$ to $199^{\circ}C$, the curing time could be reduced and more conductive particles were retained at the bonding interface between the Au bump and glass substrate.

Study of Synthesis and Property of Eu-PEG Phase Change Luminescent Materials (Eu-PEG로 구성된 상변환 발광재료의 합성 및 물성에 대한 연구)

  • Gu, Xiao-Hua;Xi, Peng;Shen, Xin-Yuan;Cheng, Bo-Wen
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.305-312
    • /
    • 2008
  • A novel TPC-PEG-TPC with active end-groups was obtained from the end-groups of polyethylene glycol (PEG) modified by terephthaloyl chloride (TPC). These active end-groups can link up with a rare earth ion, which is a luminescent center of a rare earth fluorescent complex. Complexes of Eu-PEG with novel ligands (TPC-PEG-PTC) were synthesized by the coordination of the active reactant (as the first ligand) and phenanthroline (as the second ligand) with $Eu^{3+}$.IR, $^1H$-NMR, element analysis, DSC, WAXD, fluorescent spectroscopy, TGA, and SEM were used to characterize the structure and properties of these complexes. The results showed that this type of complex is a heat storage material with the phase change character of polyethylene glycol (PEG) and the luminescent properties of europium. There was no thermal decomposition of the complex of Eu-PEG until $300^{\circ}C$. SEM showed that the complex of Eu-PEG can be dispersed in PE.

Characteristics of Ceramic Separator Impregnated by Molten Salt for Thermal Batteries (열전지용 세라믹 분리막의 용융염 전해질 함침 특성)

  • Kang, Seung-Ho;Im, Chae-Nam;Park, Byung-Jun;Cho, Sung-Baek;Cheong, Hae-Won;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.467-472
    • /
    • 2015
  • Thermal batteries are primary power sources for military applications requiring high reliability, robustness and long storage life. Conventional electrodes for thermal batteries are prepared by compacting powder mixtures into pellets. Separator is composed of halide mixture, such as LiCl-KCl eutectic salt, blended with MgO to immobilize the molten salt. In order to increase the power density and energy density, the resistance of electrolyte should be reduced because the resistance of electrolyte is predominant in thermal batteries. In this study, wetting behaviors and impregnation weight of molten salts as well as the micro structures of ceramic felt were investigated to be applicable to thin electrolyte. Discharge performances of single cell with the ceramic separator impregnated by molten salt were evaluated also. Zirconia felt with high porosity and large pore outperformed alumina felt in wetting characteristics and molten salt impregnation as well as discharge performances. Based on the results of this study, ceramic felt separator impregnated with molten salt have revealed as an alternative of conventional thick MgO based separator with no conspicuous sign of thermal runaway by short circuit.

Low Writing Field on Perpendicular Nano-ferromagnetic

  • Wibowo, Nur Aji;Rondonuwu, Ferdy S.;Purnama, Budi
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.237-240
    • /
    • 2014
  • For heat-assisted magnetic recording, magnetization reversal probabilities of nano-Pt/MnSb multilayer film with perpendicular magnetic anisotropy under thermal pulse activation were investigated numerically by solving the Landau-Lifshift Gilbert Equation. Magnetic parameters of nano-Pt/MnSb multilayer were used with anisotropy energy of $3{\times}10^5$ erg/cc and saturation magnetization of 2100 G, which offer more than 10 y data stability at room temperature. Scheme of driven magnetic field and thermal pulse on writing mechanism was designed closely to real experiment. This study found that the chosen material is potential to be used as a high density magnetic storage that requires low writing field less than two-hundreds Oersted through definite heating and cooling interval. The possibility of writing data with a zero driven magnetic field also became an important result. Further study is recommended on the thickness of media and thermal pulse design as the essential parameters of the reversal magnetization.

Consideration on the T-history Method for Measuring Heat of Fusion of Phase Change Materials (PCM의 잠열측정을 위한 T-history법에 대한 고찰)

  • 박창현;최주환;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1223-1229
    • /
    • 2001
  • Though conventional calorimetry methods such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) are used generally in measuring heat of fusion, T-history method has the advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermal properties of inhomogeneous phase change materials (PCMs) in sealed tubes. However, random criteria (a degree of supercooling) used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

  • PDF

Development of CANDU Spent Fuel Disposal Concepts for the Improvement of Disposal Efficiency (처분효율 향상을 위한 CANDU 사용후핵연료 처분개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • There are two types of spent fuels generated from nuclear power plants, CANDU type and PWR type. PWR spent fuels which include a lot of reusable material can be considered to be recycled. CANDU spent fuels are considered to directly disposed in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System(KRS) which is to dispose both PWR and CANDU spent fuels, the more effective CANDU spent fuel disposal systems have been developed. To do this, the disposal canister has been modified to hold the storage basket which can load 60 spent fuel bundles. From these modified disposal canisters, the disposal systems to meet the thermal requirement for which the temperature of the buffer materials should not be over $100^{\circ}C$ have been proposed. These new disposals have made it possible to introduce the concept of long tenn storage and retrievabililty and that of the two-layered disposal canister emplacement in one disposal hole. These disposal concepts have been compared and analyzed with the KRS CANDU spent fuel disposal system in terms of disposal effectiveness. New CANDU spent fuel disposal concepts obtained in this study seem to improve thermal effectiveness, U-density, disposal area, excavation volume, and closure material volume up to 30 - 40 %.

  • PDF

Thermal Storage/Release Properties of Thermostatic Fabrics Treated with Octadecane-Containing Microcapsules (옥타데칸 함유 마이크로캡슐을 이용한 자동온도조절 직물의 축열.방열성)

  • 김정혜;조길수;조창기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.285-288
    • /
    • 2002
  • 옥타데칸[$CH_3$[C $H_2$]$_{l6}$$CH_3$]은 상전이 물질(phase change material)이며, 상전이 물질은 상변화를 통해 주변의 온도가 상승하면 녹으면서 열을 흡수하고, 주변의 온도가 낮아지면 결정화(crystallization)하면서 열을 방출하는 축열ㆍ방열성을 반복적으로 나타내는 에너지 물질(enthalpic substance)이다[1, 2]. 옥타데칸은 메탄계열 탄화수소로서 파라핀류(paraffins)에 해당된다. (중략)략)

  • PDF