• Title/Summary/Keyword: Thermal stability and mechanical analysis

Search Result 242, Processing Time 0.025 seconds

Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel (사용후핵연료 심층처분을 위한 암석의 간접복합거동 연구사례)

  • Hoyoung, Jeong;Juhyi, Yim;Ki-Bok, Min;Sangki, Kwon;Seungbeom, Choi;Young Jin, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.411-434
    • /
    • 2022
  • In deep geological disposal concept for spent nuclear fuel, it is well-known that rock mass at near-field experiences the thermal-hydraulic-mechanical (THM) coupled behavior. The mechanical properties of rock changes during the coupled process, and it is important to consider the changes into the analysis of numerical simulation and in-situ tests for long-term stability evaluation of nuclear waste disposal repository. This report collected the previous studies on indirect coupled behaviors of rock. The effects of water saturation and temperature on some mechanical properties of rock was considered, while the change in hydraulic conductivity of rock due to stress was included in the indirect coupled behavior.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin (전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가)

  • Park, Hee Jeong;Lim, Hyung Mi;Choi, Sung-Churl;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

Numerical Verification for Plane Failure of Rock Slopes Using Implicit Joint-Continuum Model (내재적 절리-연속체 모델을 이용한 암반사면 평면파괴의 수치해석적 검증)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.125-132
    • /
    • 2020
  • Embedded joints in the rock mass are a major constituent influencing its mechanical behavior. Numerical analysis requires a rigorous modeling methodology for the rock mass with detailed information regarding joint properties, orientation, spacing, and persistence. This paper provides a mechanical model for a jointed rock mass based on the implicit joint-continuum approach. Stiffness tensors for rock mass are evaluated for an assemblage of intact rock separated by sets of joint planes. It is a linear summation of compliance of each joint sets and intact rock in the serial stiffness system. In the application example, kinematic analysis for a planar failure of rock slope is comparable with empirical daylight envelope and its lateral limits. Since the developed implicit joint-continuity model is formulated on a continuum basis, it will be a major tool for the numerical simulations adopting published plenteous thermal-hydro-chemical experimental results.

Nanotronics-The Role of the Engineer in Nano-Technology. (나노트로닉스-나노테크놀로지에서 엔지니어의 역할)

  • Stout, K.J.;Johnson, A.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.15-26
    • /
    • 1998
  • The role of the Engineer in the era of nano-technology is explored, a trend in manufacture which is expected to yield a $20-30 billion per annum business throughout the world by the year 2020. The engineers who will be working in this subject will be required to have broadly based experience, over a range of traditional disciplines, such as physics. electronics, software engineering, control and mechanical engineering. As well as having an appreciation of other disciplines such as air conditioning, vibration analysis and its minimisation, the selection of materials for maximum stability and minimal thermal distortion as well as an understanding of ultra precision design and nano tribology. In other words the engineer who is to be successful in this new and emerging field, will have to be broader based than engineers of the past, where it was traditional to break up the elements of a discipline to smaller subsets. But as nano-technology advances and the subject brings about the evolution of nanotronics to provide a successful solution to emerging problems, it will be essential for a breed of engineers to develop who can consider the subject in a holistic manner. This paper therefore considers the emergence of nano-technology, predicts the subsets of the development and places them in context of the new engineer which will be required in increasing numbers. The paper summarises the skills of the proposed nanotronics engineer and provides a basis for their training and development.

  • PDF

Thermomechanical Characteristics of Poly(vinyl alcohol)/Chitosan Films and Its Blend Hydrogels (폴리(비닐 알코올)/키토산 블렌드와 블렌드 수화젤의 열특성)

  • Park Jun Seo;Park Jang Woo;Kim Byung Ho
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.183-189
    • /
    • 2005
  • Films of poly(vinyl alcohol)(PVA)/chitosan blends and its blend hydrogels were prepared by the solution casting method. The state of miscibility of the blends and blend hydrogels were examined over the entire composition range by differential scanning carorimetry (DSC), thermogravimetry (TGA), and dynamic mechanical analysis (DMA). DSC analysis shows the depression of melting point of PVA in the blends and the decrease of crystallization temperature of PVA in the blends were observed with increasing chitosan content in the blends. TGA analysis indicates that chitosan was thermally more stable than PVA and the thermal stability of PVA in the blends was higher than that of pure PVA, due to some interactions between two component polymers in the blend. The glass transition temperature $(T_g)$ of the chitosan and of PVA, measured by DMA, were at 160 and $90^{\circ}C$, respectively. The $T_g$ of the blends was changed with the content of chitosan in the blends. The results of thermal and viscoelastic analysis indicate some miscibility between component polymers in the blend exists. Moisture and cross linking in the blend and blend hydrogel, which strongly change thermal and physical properties of hydrophilic polymers, affected the miscibility of chitosan and PVA to a small extent.

High Temperature Compressive Deformation Behavior of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy (벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 압축 변형 특성)

  • 이광석;하태권;안상호;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.565-572
    • /
    • 2001
  • It is well known that a multicomponent $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk metallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state. DSC and XRD have been performed to confirm the amorphous structure of the master alloy. To investigate the mechanical properties and deformation behavior of the bulk metallic $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$at the various initial strain rates from $2{\times}10^4s^1$ to $2{\times}10^2s^1$. Three types of nominal stress-strain curves have been identified such as linear stress-strain relationship meaning fracture at maximum stress, plastic deformation including stress overshoot and steady-state flow, plastic deformation without stress overshoot depending on the strain rate and test temperature. Also DSC analysis for the compressed specimens was carried out to investigate the change of structure, thermal stability and crystallization behavior for the various test conditions.

  • PDF

High Temperature Plastic Deformation Behaviors of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy (벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 소성 변형 특성)

  • Lee K. S.;Ha T. K.;Ahn S. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.272-276
    • /
    • 2001
  • Multicomponent $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk matallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state.1) In this study, DSC and X-ray diffractometry have been performed to confirm the amorphous structure of the master $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy. To investigate the mechanical properties and deformation behaviors of the bulk metallic $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$ and at the various initial strain rates from $2{\times}10^{-4}s^{-1}\;to\;2{\times}10^{-2}s^{-1}$. There are two types of nominal stress-strain curves. The one shows linear stress-strain relationship meaning fracture at maximum stress, the other shows plastic deformation including steady-state flow. Also DSC analysis for the compressed specimens has been performed to investigate the change of thermal stability and crystallization behavior for the various test conditions.

  • PDF

Measurement and Verification of Unfrozen Water Retention Curve of Frozen Sandy Soil Based on Pore Water Salinity (간극수 염분농도에 따른 동결 사질토의 부동수분곡선 산정 및 검증 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.53-62
    • /
    • 2023
  • The characteristics of unfrozen water content in frozen soils significantly impact the thermal, hydraulic, and mechanical behavior of the ground. A thorough analysis of the unfrozen water content characteristics of the target subsoil material is crucial for evaluating the stability of frozen ground. This study conducted indoor experiments to measure the freezing point and unfrozen water content of sandy soil while considering pore water salinity. Utilizing the experimental data, we introduced a novel empirical model to conveniently estimate the unfrozen water retention curve. Furthermore, the validity of the unfrozen water retention curve was assessed by comparing the experimental data with the results of a simulation model that utilized the proposed empirical model as input data.