• 제목/요약/키워드: Thermal spray powder

검색결과 118건 처리시간 0.03초

재활용 APT를 이용한 WO3 제조와 WC-Co 의 용사코팅 (WO3 Fabrication and Thermal Spray Coating of WC-Co using Recycled Ammonium Paratungstate (APT))

  • 정준기;김성진;온진호;문흥수;피재환;하태권;박상엽
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.287-292
    • /
    • 2015
  • The possibility of chemical precipitation for recycled ammonium paratungstate (APT) was studied. WO3 particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT:DI-water. At the 500℃ sintering temperature, the X-ray diffraction results showed that APT completely decomposed to WO3. For the granulated powder WC-Co, vacuum heat treatment at proper temperatures increases tap density and flow-ability. Hardness of the WC-Co thermal spray coating layer was measured in the range HV 831~1266. Spray conditions for the best characteristic values were an oxygen flow rate=1500 scfh, a fuel flow rate = 5.25gph and a gun distance = 320mm.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구 (A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying)

  • 배명환;박병호;정화;박희성
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.

고속화염용사코팅으로 제조된 WC-CoFe 코팅의 기계적 특성에 관한 연구 (The Mechanical Properties of WC-CoFe Coating Sprayed by HVOF)

  • 주윤곤;조동율;하성식;이찬규;천희곤;허성강;윤재홍
    • 열처리공학회지
    • /
    • 제25권1호
    • /
    • pp.6-13
    • /
    • 2012
  • HVOF thermal spray coating of 80%WC-CoFe powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and hard ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen by chrome plating and the brittleness of ceramics coatings. 80%WC-CoFe powder was coated by HVOF thermal spraying for the study of durability improvement of the high speed spindle such as air bearing spindle. The coating procedure was designed by the Taguchi program, including 4 parameters of hydrogen and oxygen flow rates, powder feed rate and spray distance. The surface properties of the 80%WC-CoFe powder coating were investigated roughness, hardness and porosity. The optimal condition for thermal spray has been ensured by the relationship between the spary parameters and the hardness of the coatings. The optimal coating process obtained by Taguchi program is the process of oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min and spray distance 8 inch. The coating cross-sectional structure was observed scanning electron microscope before chemical etching. Estimation of coating porosity was performed using metallugical image analysis. The Friction and wear behaviors of HVOF WC-CoFe coating prepared by OCP are investigated by reciprocating sliding wear test at $25^{\circ}C$ and $450^{\circ}C$. Friction coefficients (FC) of coating decreases as sliding surface temperature increases from $25^{\circ}C$ to $450^{\circ}C$.

분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy)

  • 김민수;방원규;박우진;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

Creation of Diamond/Molybdenum Composite Coating in Open Air

  • Ando, Yasutaka;Tobe, Shogo;Tahara, Hirokazu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1313-1314
    • /
    • 2006
  • For improvement of wear resistance property of atmospheric thermal plasma sprayed molybdenum (Mo) coating, diamond deposition on the atmospheric plasma sprayed molybdenum coating by the combustion flame chemical vapor deposition (CFCVD) has been operated. In this study, to diminish the thermal damage of the substrate during operation, a thermal insulator was equipped between substrate and water-cooled substrate holder. Consequently, diamond particles could be created on the Mo coating without fracture and peeling off. From these results, it was found that this process had a high potential in order to improve wear resistance of thermal sprayed coating.

  • PDF

열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구 (Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC)

  • 박광연;임탁형;이승복;박석주;송락현;신동렬
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

건축용 벽 바름재로서 패각분말의 활용성 연구 (Utilizability of Shell Powder as Wall Coatings for Thin Textured Finishes)

  • 전지현;국찬
    • KIEAE Journal
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2007
  • 0.4 Million tons of shell powder have been disused as waste in KOREA and caused severe environmental pollution though shell powder can be utilized in real life for many ways. It is impending problem to recycle shell powder as it requires high expense for burying and temporary outside heap and causes severe environmental pollution being a main factor of ocean waste. To suggest the basic data for development of eco-friendly and high-function Wall Coatings Thin Textured Finishes, a wall coating sample was applied to indoor walls of a mock-up and temperature and humidity were measured to assess the thermal performance of it, and a survey of preference for the color sense and feel of the materials with a movie of specimens. The results of the study are following; 1) High insulation performance is shown from the assessment result of the room polystyrene board adhered on the walls then high humidity controlling performance is shown from that of the room polystyrene board coated by shell powder. This point out that shell powder has superiority for humidity controlling. 2) The result of thermal and humidity assessment shows that shell powder makes up for thermal conduction of the polystyrene board and same result can be expected from the assessment with materials which has similar thermal characteristics with polystyrene.3) Ranking of preferred specimens is; 1st Case 13, 2nd Case 17, 3rd Case 16, and 4th Case 12. Preferred shell powder was the ark shell. Preferred powder for plaster was the powder mixed with that sifted by 0.8mm, 100mesh and 40mesh, and for spray was the fine powder mixed with that sifted by 100mesh and 40mesh.

분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy)

  • 김민수;방원규;박우진;장영원
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.502-508
    • /
    • 2005
  • Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.

초음파분무열분해법에 의한 나노 텅스텐 분말의 형성 및 특성에 관하여 (The Characteristics and Formation of Tungsten Nano-Powder by Ultrasonic Spray Pyrolysis Method)

  • 이호진;윤중현;최진일
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.174-179
    • /
    • 2008
  • Nanosize tungsten powder was synthesized by ultrasonic spray pyrolysis method through a solution containing ammonium metatungstate hydrate $[(NH_4)_6W_{12}O_{39}{\cdot}H_2O]$ and reduction treatment. It was expected the improvement of mechanical properties due to increasing surface free energy and surface activity. Starting solutions with each concentration, reaction temperature and reduction treatment were significantly influenced on the formation of tungsten size and phase. It was found that particle size was decreased with concentration of starting solution and surface tension were decreased. The particle size was increased at thermal decomposition temperature above $600^{\circ}C$ by neck growth of interparticles. Tungsten particles were formed by reduction reaction in atmosphere of hydrogen gas at the temperature above $700^{\circ}C$.