• 제목/요약/키워드: Thermal softening

검색결과 155건 처리시간 0.046초

단조 금형의 윤활, 표면처리 및 금형 수명 평가 (Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments)

  • 김병민
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

화학적방법과 방사선으로 가교된 저밀도 폴리에티렌의 열적 기계적 및 유전적 특성의 비교연구 (A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methodes)

  • 김봉흡;강도열;김정수
    • 전기의세계
    • /
    • 제25권2호
    • /
    • pp.100-106
    • /
    • 1976
  • A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca.20.deg.C to 320.deg.C and a frequency range of KHZ to MHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking, however, melting and liquidizing temperatures attain rapid increase at the imitiation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation.

  • PDF

고온 단열벽돌의 열전도성에 미치는 미세구조의 영향 (Microstructural Effects Influencing the Thermal Conductivity of High-Temeprature Insulation Firebricks)

  • 장복기;임재봉
    • 한국세라믹학회지
    • /
    • 제27권6호
    • /
    • pp.729-734
    • /
    • 1990
  • The microstructural dependence of thermal conductivity of a high-alumina (ca. 70%) heat-insulating frebricks(ca. 75%porosity) was investigated under special consideration of the tailored-pore shape effects. Pores different shape could be incorporated into the insulators through pore formers : Styrofoam produces spherical pores while saw dust results in parallel plate pores. Concerning the pore-shape effectiveness of thermal insulation, the specimen with irregular plate pores showed much lower values of heat conductivity than those with spherical pores, the values being 0.31 to 0.38 at $600^{\circ}C$ and 0.35 to 0.47 at 100$0^{\circ}C$, respectively. On the contrary, however, other material properties such as strength and softening temeprature under load were turned out to be better in the case of the spherical pores.

  • PDF

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

윤활제와 표면처리에 따른 온간단조 금형의 열적특성 평가 (Evaluation of Thermal Characteristics for Warm Forging Die due to Lubricants and Surface Treatments)

  • 김종호;김동진;정덕진;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.833-836
    • /
    • 2000
  • The mechanical and thermal load. and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause wear. heat checking and plastic deformation, etc. This study is for the effects of solid lubricants and surface treatments for warm forging die Because cooling effect and low friction are essential to the long lift of dies. optimal surface treatments and lubricants are very important to hot and warm forging Process. The heat that is generated by repeated forging processes. and its transfer are important factors to affect die life. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these. experiments art performed for diffusion coefficient and heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments. and oil- base and water-base graphite lubrirants are used. The effects of lubricant and surface treatment for warm forging die lift are explained by their thermal characteristics.

  • PDF

SIS-SBS 개질아스팔트 방수시트재 물성 최적화 (Optimization to Prepare SIS-SBS Modified Asphalt for Waterproof-sheet)

  • 임광희
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.690-697
    • /
    • 2017
  • 본 연구에서는 방수시트재를 위한 아스팔트의 styrene-butadiene-styrene (SBS)와 styrene-isoprene-styrene (SIS)에 의한 개질에 있어서 자가치유성을 가지는 개질아스팔트 방수시트재의 연화점(softening point), 침입도(penetration), 저온굴곡저항성능(low temperature flexibility), 점도(viscosity) 및 부착성능(adhesion) 등의 물성을 관찰하고, 반응표면분석법(response surface methodology, RSM)을 활용하여 아스팔트 질량 대비 SBS와 SIS의 적정조성을 도출하고 자가치유성을 가지는 개질아스팔트 방수시트재의 물성을 최적화하였다. 고온에서 측정이 수행되는 연화점과 점도는 SBS 또는 SIS의 함량이 증가함에 따라서 유의하게 값이 증가하였다. 그러나 함량 대비 연화점과 점도 증가분은 SBS 경우가 SIS보다 커짐이 관찰되었다. 이러한 원인은 SBS와 SIS의 열적거동의 차이 때문인데, SBS는 고온에서 점도 상승을 동반하는 겔화(gelation)가 되어 가교도가 커지나 SIS는 점도감소를 초래하는 폴리이소프렌 블록의 사슬분리(chain scission) 때문에 사슬꼬임(chain entanglement)이 상대적으로 적어지기 때문이다. 반면에 SIS-SBS 개질아스팔트는 상온에서 측정되는 침입도, 부착성능 및 저온굴곡성능에 대하여, 아스팔트 63 g을 기본으로 SIS 4~5 g과 SBS 8.5 g의 조성에서 최소 탄성거동을 나타내어 최대 침입도 및 최대 부착성능과 최저 저온굴곡성능 값을 보였다.

Effects of pressure during the synthesis of petroleum pitch precursors in open and closed systems

  • Choi, Jong-Eun;Ko, Seunghyun;Kim, Jong Gu;Jeon, Young-Pyo
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.95-102
    • /
    • 2018
  • We examined the pressure effects on petroleum pitch synthesis by using open and closed reaction systems. The pressure effects that occur during the pitch synthesis were investigated in three pressure systems: a closed system of high pressure and two open systems under either an atmosphere or vacuum. A thermal reaction in the closed system led to the high product yield of a pitch by suppressing the release of light components in pyrolysis fuel oil. Atmospheric treatment mainly enhanced the polymerization degree of the pitch via condensation and a polymerization reaction. Vacuum treatment results in a softening point increase due to the removal of components with low molecular weights. To utilize such characteristic effects of system pressure during pitch preparations, we proposed a method for synthesizing cost-competitive pitch precursors for carbon materials. The first step is to increase product yield by using a closed system; the second step is to increase the degree of polymerization toward the desired molecular distribution, followed by the use of vacuum treatment to adjust softening points. Thus, we obtained an experimental quinoline insolubles-free pitch of product yield over 45% with softening points of approximately $130^{\circ}C$. The proposed method shows the possibility to prepare cost-competitive pitch precursors for carbon materials by enhancing product yield and other properties.

콜타르로부터 탄소섬유 제조를 위한 프리커서용 석탄계 핏치의 제조 (Preparation of Coal Tar Pitch as Carbon Fibers Precursor from Coal Tar)

  • 고효준;박창욱;조효행;유미정;김명수;임연수
    • 한국재료학회지
    • /
    • 제23권5호
    • /
    • pp.276-280
    • /
    • 2013
  • Coal tar is the primary feedstock of premium graphitizable carbon precursor. Coal tars are residues formed as byproducts of thermal treatments of coal. Coal tar pitches were prepared through two different heat treatment schedules and their properties were characterized. One was prepared with argon and oxidation treatment with oxygen; the other was prepared with oxygen treatment at low temperature and then argon treatment at high temperature; both used coal tar to prepare coal tar pitches. To modulate the properties, different heat treatment temperatures ($300{\sim}400^{\circ}C$) were used for the coal tar pitches. The prepared coal tar pitches were investigated to determine several properties, such as softening point, C/H ratio, coke yield, and aromaticity index. The coal tar pitches were subject to considerable changes in chemical composition that arose due to polymerization after heat treatment. Coal tar pitch showed considerable increases in softening point, C/H ratio, coke yields, and aromaticity index compared to those characteristics for coal tar. The contents of gamma resin, which consists of low molecular weight compounds in the pitches and is insoluble in toluene, showed that the degree of polymerization in the pitches was proportional to C/H ratio. Using an oxidizing atmosphere like air to prepare the pitches from coal tar was an effective way to increase the aromaticity index at relatively low temperature.

표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가 (Die Life Estimation of Hot Forging for Surface Treatment and Lubricants)

  • 이현철;김병민;김광호
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

PDP용 Ag전극 페이스트의 Bi계 프릿 제조 및 특성 (Preparation and Characterization of Bi based frit for Ag Electrode in PDP Application)

  • 김형수;최정철;이병옥;최승철
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.47-52
    • /
    • 2003
  • PDP전극용 Ag전극 페이스트의 프릿으로 기존의 Pb-based 프릿을 대신 할 수 있는 Bi-based 조성의 새로운 유리조성의 가능성을 검토하였다. PDP디스플레이 응용을 위해 프릿의 저융점화 및 열팽창계수 제어를 행하였고, 이를 전극 페이스트 제조에 적용하여 스크린 프린팅된 전극을 평가하였다. $Bi_2O_3$를 50-60wt%이상 첨가된 $Bi_2O_3-B_2O_3-Al_2O_3$계 조성의 프릿은 연화점이 400∼$480^{\circ}C$, 열팽창계수가 7.31∼$10.02\times 10^{-6}/^{\circ}C$이며, 전극의 단자저항은 4.1∼4.8$\Omega$ 이었다. 본 연구에서 새로이 개발된 Bi계 프릿조성은 Pb계 조성의 프릿에 상당하는 물성을 얻을 수 있었으며, 이를 전극용 페이스트에 적용한 결과, 전극 프린팅에서 퍼짐성과 균일성이 우수하였다. PDP전극용 무연, 무 알카리 프릿으로 Bi계 조성의 적용가능성을 확인할 수 있었다.

  • PDF