• Title/Summary/Keyword: Thermal response analysis

Search Result 432, Processing Time 0.028 seconds

Analysis on Living Factor and Actual State of Indoor Thermal Environment in Apartment Units during Winter (아파트의 겨울철 실내온열환경 실태와 생활요인 분석)

  • Choi, Yoon-Jung;Jeong, Youn-Hong
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • The purposes of this study were to determine the actual state of the indoor thermal environment in apartment units and to analyze the relationship between the living factors and indoor thermal elements. The field surveys consisted of measurements of physical elements and observations of living factors. In addition, the residents of 20 apartment units were interviewed to survey their subjective response. Field surveys were carried out from January to March 2007. Measuring elements were air temperature, globe temperature, and relative humidity. The results showed that the average of indoor temperature for the houses was $21.2{\sim}27.2^{\circ}C$, while 4 houses exceeded the comfort zone. The average of globe temperature for the houses was $21.3{\sim}27.5^{\circ}C$, while 6 houses exceeded the comfort zone. The mean relative humidity was $19.5{\sim}58.8%$, which is a relatively dry condition. The residents' average clothing value was $0.39{\sim}0.89$ clo(average 0.68 clo). The average thermal sensation vote on each room was $4.2{\sim}4.8$, which is 'neutral' to 'slightly warm'. Living factors had significant effect on indoor temperature in regression analysis were ventilation time(outdoor air exchange), opening time of door through balcony, and gas cooker use time.

Vibration response of rotating carbon nanotube reinforced composites in thermal environment

  • Ozge Ozdemir;Ismail Esen;Huseyin Ural
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • This paper deals with the free vibration behavior of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. The temperature-dependent beam material is assumed to be a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix and five different functionally graded (FG) distributions of CNTs are considered according to the variation along the thickness, namely the UD-uniform, FG-O, FG-V, FG-Λ and FG-X distributions where FG-V and FG-Λ are unsymmetrical patterns. Considering the Timoshenko beam theory (TBT), a new finite element formulation of functionally graded carbon nanotube reinforced composite (FGCNTRC) beam is created for the first time. And the effects of several essential parameters including rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force and moments due to temperature variation are considered in the formulation. By implementing different boundary conditions, some new results of both symmetric and non-symmetrical distribution patterns are presented in tables and figures to be used as benchmark for further validation. In addition, as an alternative advanced composite application for rotating systems exposed to thermal load, the positive effects of CNT addition in improving the dynamic performance of the system have been observed and the results are presented in several tables and figures.

Three-dimensional Equivalent Transient Ground Heat Exchanger Thermal Analysis Model by Considering Heating and Cooling Operations in Buildings (건물의 냉난방 운전을 고려한 3차원 동적 지중 열교환기 열해석 모델)

  • Baek, Seung Hyo
    • Land and Housing Review
    • /
    • v.9 no.4
    • /
    • pp.25-32
    • /
    • 2018
  • Application of geothermal energy in buildings has been gaining popularity as it provides the benefits of both heating and cooling a building. Among the various types of geothermal energy systems, ground-coupled heat pump system is the most commonly applied one in South Korea. A ground heat exchanger plays an important role as a heat source in winter and a heat sink in summer. For the stable operation of a ground-coupled heat pump system, a ground heat exchanger should be sized so that it provides sufficient heating and cooling energy. Heating and cooling energies generated in ground heat exchangers mainly depend on the temperature difference between the heating medium in ground heat exchangers and the surrounding ground. In addition, the performance of ground heat exchangers influences the change in ground temperature. Therefore, it is necessary to consider this interrelation between the change in the ground temperature and the performance of ground heat exchanger for an accurate estimation of its performance. However, previous thermal analysis models for ground heat exchangers are not competent enough to allow a complete understanding of this interrelation. Therefore, this study proposes a three-dimensional equivalent, transient ground heat exchanger analysis model. First, a previous thermal analysis model for ground heat exchangers, including an analytical model, a g-function, and a numerical model are analyzed. Next, to overcome the limitations of the previous models, a three-dimensional equivalent, transient ground heat exchanger model is proposed. Finally, this study validated the proposed model with the measurement data of the thermal response test, sandbox test, and TRNSYS DST model. All validation results showed a good agreement. These findings helped us to investigate the thermal performance of ground heat exchangers more accurately than the analytical models, and faster than the numerical models. Furthermore, the proposed model contributes to the design of ground heat exchangers by considering the different operation conditions of buildings.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

Electrical modelling for thermal behavior and gas response of combustible catalytic sensor (접촉연소식 센서의 열 특성 및 가스반응의 모델링)

  • Lee, Sang-Mun;Song, Kap-Duk;Joo, Byung-Su;Lee, Yun-Su;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • This study provides the electrical model of combustible catalytic gas sensor. Physical characteristics such as thermal behavior, resistance change were included in this model. The finite element method analysis for sensor device structure showed that the thermal behavior of sensor is expressed in a simple electrical equivalent circuit that consists of a resistor, a capacitor and a current source. This thermal equivalent circuit interfaces with real electrical circuit using two parts. One is 'power to heat' converter. The other is temperature dependent variable resistor. These parts realized with the analog behavior devices of the SPICE library. The gas response tendency was represented from the mass transferring limitation theory and the combustion theory. In this model, Gas concentration that is expressed in voltage at the model, is converted to heat and is flowed to the thermal equivalent circuit. This model is tested in several circuit simulations. The resistance change of device, the delay time due to thermal capacity, the gas responses output voltage that are calculated from SPICE simulations correspond well to real results from measuring in electrical circuits. Also good simulation result can be produced in the more complicated circuit that includes amplifier, bios circiut, buffer part.

Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions

  • Qingyu Yang;Jiachuan Yan;Feng Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2069-2087
    • /
    • 2023
  • In nuclear power plant (NPP) accidents, the containment is subject to high temperatures and high internal pressures, which may further trigger serious chain accidents such as core meltdown and hydrogen explosion, resulting in a significantly higher accident level. Therefore, studying the mechanical performance of a containment under high temperature and high internal pressure is relevant to the safety of NPPs. Based on similarity principles, the 1:3.2 scale model of a prestressed concrete containment vessel (PCCV) of a NPP was designed. The loading method, which considers the thermal-pressure coupling conditions, was used. The mechanical response of the PCCV was investigated with a simultaneous increase in internal pressure and temperature, and the failure mechanism of the PCCV under thermal-pressure coupling conditions was revealed.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

Thermal Properties of Diglycidyl Ether of Terephthalylidene-bis-(4-amino-3-methylphenol) (Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol)의 열적 성질에 대한 연구)

  • Hyun, Ha-Neul;Choi, Ji-Woo;Cho, Seung-Hyun
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.53-60
    • /
    • 2022
  • This study uses Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol) (DGETAM), an amine hardener 4,4'-diaminodiphenylethane (DDE) and cationic catalyst N-benzylpyrazinium hexafluoroantimonate (BPH) to make epoxy film. For analysis, 1H_NMR and FT-IR were used to verify proper synthesis, and the liquid crystallinity of DGETAM was checked using Differntial Scanning Calorimetry and Polarized Optical Microscopy. Thermal conductivity of the sample was measured using Laser Flash Apparatus. Thermal stability as well as thermal conductivity is important when used as a packaging material. Activated energy is the energy needed to generate a response, which can be used to estimate the energy required to maintain physical properties. It was obtained using the Arrhenius equation based on the data measured by isothermal decomposition using Thermogravimetric Analysis. Measurement of the thermal conductivity of epoxy films showed higher thermal conductivity when DDE was used, and it was found that thermal conductivity had an effect on thermal stability, given that it represented an activation energy similar to a film with BPH upon 5% decomposition.

A Study on the Low Temperature Bleaching of Cotton with Peroxygen Boosters (과산화조제에 의한 면직물의 저온표백에 관한 연구)

  • Choi, Chul Ho;Lee, Chan Min
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.35-42
    • /
    • 1996
  • Peroxodisulfates are being developed as low temperature bleaching agents for cotton fabrics to save the thermal energy. In this research we used the colar difference meter to determine the whiteness which peroxide booster will possibly make an effect on cotton fabric at the low temperature process using consist of temperature with different conditions agents, such as sodium hydroxide, sodium peroxodisulfate and potassium peroxodisulfate. The peroxide bleaching follows a laboratory experiments, using a statistical plan for three variables: the concentrations of hydrogen peroxide and sodium hydroxide and the temperature of bathing. The purpose of this research was to use the response surface analysis method to evaluate the relative importance of factors providing optimum whiteness. A ridge analysis of the data on whiteness response results in 3-D response surface diagrams for optimizing the concentrations of hydrogen peroxide and sodium hydroxide at about 42~52$^{\circ}C$.

  • PDF

Investigation of physical characteristics for Al2O3:C dosimeter using LM-OSL

  • Kim, Myung-Jin;Lee, Young-Ju;Kim, Ki-Bum;Hong, Duk-Geun
    • Analytical Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • This paper reports results on the physical properties of a powder type of $Al_2O_3:C$ commonly used as a luminescence dosimeter using the LM-OSL technique. On the analysis with the general order kinetics model, the LM-OSL signal measured appeared to be composed of three components (fast, medium, slow) showing the largest area in the medium component. The photoionization cross sections of three components were distributed between $10^{-19}{\sim}10^{-21}cm^2$. The values of the thermal assistance energy were evaluated the largest in slow component and the smallest in fast component, which indicates the electrons trapped in defects attributed to slow component should be the most sensitive to thermal vibration among three components. In illumination to blue light, the fast component showed a rapid linear decay and completely disappeared after light exposure time of about 5 s. The medium component decayed with two exponential elements but the slow component did not observed any noticeable change until light exposure time of 40 s. In a dose response study, all components exhibited a linear behaviour up to approximately 10 Gy.