• Title/Summary/Keyword: Thermal resistance

Search Result 2,903, Processing Time 0.022 seconds

Evaluation of the Thermal Performance and Condensation Resistance of a Steel Frame Curtain Wall System (스틸 커튼월의 단열성능 및 결로방지성능 평가)

  • Kim, Sun Sook;Cho, Bong Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.51-57
    • /
    • 2013
  • Metal curtain wall systems are widely used in high-rise commercial and residential buildings. While aluminum is the most frequent used frame material, steel framing is also reemerging as a high-performance material in glazed curtain walls due to less thermal conductivity and design flexibility. The purpose of this study is to evaluate thermal performance of a steel frame curtain wall system by comparing with a aluminum frame curtain wall system. The thermal transmittance was measured according to KS 2278, and condensation resistance was calculated by the test results according to KS F 2295. The steel framing test specimen showed lower thermal transmittance and temperature descending factor compared to the aluminum framing test specimen.

Aluminium Titanate Sintering Study Aimed at Rational Design of Microstructure for Optimal Thermal Shock Characteristics

  • Alecu, Ioan D.;Stead, Rodney J.
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.78-81
    • /
    • 1999
  • Aluminium titanate is highly anisotropic in thermal expansion. As a result, thermal stresses build up in the material and intergranular cracks can develop. Both the outstanding thermal shock resistance and the low mechanical strength of aluminium titanate ceramics are a result of intergranular microcracking. The authors have previously identified a possibility of remarkably increasing fracture toughness of aluminium titanate without excessive penalty on strength. The paper shows that sintered density and porosity measurements can be used for optimizing the sintering and microstructure of aluminium titanate for an ideal balance between toughness and strength and, hence, the best thermal shock resistance.

  • PDF

A Study on the Thermal Resistance of Wool Fabric Constructions (의류직물의 구성조건에 따른 열저항 특성 연구)

  • Kim, Tae-Hoon;Jun, Byung-Ik
    • Fashion & Textile Research Journal
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • The purpose of this study was to determine the thermal characteristics of men's suits ensembles and their fabrics. For the study, 100% wool fabrics were woven with various fabric structure, fabric density and yam count and With the use of these, 12 men's suits were made with the same design. Physical characteristics that affect thermal transport properties, including drapery, cover factor; bulk density, keeping warmth ratio, vapor permeability, air permeability and porosity of the fabrics were measured. In addition, thermal resistance of men's suit ensembles, including Y-shirts, inner wear and socks was measured on the thermal manikin in the environmental chamber. The result of the study was as follows: 1. In terms of fabric structure, keeping warmth ratio of plain woven fabrics was higher than those of twill and satin woven fabrics and also, vapor and air permeability and porosity of plain woven fabrics were higher than those of twill and satin woven fabrics. 2. The result showed that thermal resistance of 12 ensembles were in the range of 0.77clo~0.97clo. 3. There was little correlation between woven condition such as, including structure, fabric density and yam count and thermal resistance of ensembles.

  • PDF

A Study on Thermal Performance of Micro Channel Water Block for Computer CPU Cooling (컴퓨터 CPU 냉각용 미세채널 워터블록의 열성능에 관한 연구)

  • Kwon, Oh-Kyung;Choi, Mi-Jin;Cha, Dong-An;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.776-783
    • /
    • 2008
  • The object of this paper is to study on the thermal performance of a micro channel water block for computer CPU cooling. The effects of liquid flow rate, micro channel width and height on the thermal performances of water block are investigated experimentally. The water block was fabricated Al and machined with a micro milling. The water block consisted of rectangular micro channels 0.5 to 0.9 mm width and 1.5 to 4.5 mm height. The experiments were conducted using deionized water, over a liquid flow rate ranging from 0.2 to 2.0 kg/min. The base temperature and thermal resistance decrease with increasing of liquid flow rate. The increase of a channel height is more effective on the thermal resistance than the decrease of a channel width. At the flow rate of 0.7 kg/min, input power of 100 W, the base temperature and thermal resistance of sample 6 is $33^{\circ}C$ and $0.13\;^{\circ}C/W$ respectively.

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

Modified Thermal-divergence Model for a High-power Laser Diode (고출력 레이저 다이오드 광원의 열저항 개선을 위한 하부층 두께 의존성 수정 모델)

  • Yong, Hyeon Joong;Baek, Young Jae;Yu, Dong Il;O, Beom Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.5
    • /
    • pp.193-196
    • /
    • 2019
  • The design and control of thermal flow is important for the operation of high-power laser diodes (LDs). It is necessary to analyze and improve the thermal bottleneck near the active layer of an LD. As the error in prediction of the thermal resistance of an LD is large, typically due to the hyperbolic increase and saturation to linear increase of the thermal resistance as a function of thickness, it is helpful to use a simple, modified divergence model for the improvement and optimization of thermal resistance. The characteristics of LDs are described quite well, in that the values for simulated thermal resistance curves and the thermal cross section followed are almost the same as the values from the model function. Also, the thermal-cross-section curve obtained by differentiating the thermal resistance is good for identifying thermal bottlenecks intuitively, and is also fitted quite well by the model proposed for both a typical LD structure and an improved LD with thin capping and high thermal conductivity.

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

Thermal transfer behavior in two types of W-shape ground heat exchangers installed in multilayer soils

  • Yoon, Seok;Lee, Seung-Rae;Go, Gyu-Hyun;Xue, Jianfeng;Park, Hyunku;Park, Dowon
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.79-98
    • /
    • 2014
  • This paper presents an experimental and numerical study on the evaluation of a thermal response test using a precast high-strength concrete (PHC) energy pile and a closed vertical system with W-type ground heat exchangers (GHEs). Field thermal response tests (TRTs) were conducted on a PHC energy pile and on a general vertical GHE installed in a multiple layered soil ground. The equivalent ground thermal conductivity was determined by using the results from TRTs. A simple analytical solution is suggested in this research to derive an equivalent ground thermal conductivity of the multilayered soils for vertically buried GHEs. The PHC energy pile and general vertical system were numerically modeled using a three dimensional finite element method to compare the results with TRTs'. Borehole thermal resistance values were also obtained from the numerical results, and they were compared with various analytical solutions. Additionally, the effect of ground thermal conductivity on the borehole thermal resistance was analyzed.

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

A Study on the Textile for Protective Clothing of Fire Fighters (한국 소방대원 방수피복의 소재특성에 관한 비교 연구)

  • 정정숙;이연순
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.5
    • /
    • pp.15-24
    • /
    • 2002
  • The following research conclusions were made, relative to the experiments of the textiles of fire fighters Protective Clothing. 1. When the body protection efficiency such as the thickness, the strength and heat resistance are considered, Nomex(N) is tuned out the best outer shelf, Gore-tex(KG) the best moisture barrier, and Wool-felt(WC) the best thermal barrier. 2. In the hygienic and sanitary efficiency also, N is turned out the best outer shelf, KG the best moisture barrier, and WC the best thermal barrier in its degree of water resistance, water vapour permeability, and air permeability. 3. In the washing and maintenance efficiency, too. N is turned out the best outer shell, KG the best moisture barrier, and WC the best thermal barrier, being considered the material's rate of contraction, the changing rate of frame resistance, water resistance, and water vapour permeability. 4. When considered the frame resistance against the reflection tape and reflection efficiency, O is the best material for it marks the highest score in the frame resistance and reflective effect.