• 제목/요약/키워드: Thermal resistance

검색결과 2,903건 처리시간 0.032초

Development of thermal conductivity model with use of a thermal resistance circuit for metallic UO2 microcell nuclear fuel pellets

  • Heung Soo Lee;Dong Seok Kim;Dong-Joo Kim;Jae Ho Yang;Ji-Hae Yoon;Ji Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3860-3865
    • /
    • 2023
  • A metallic microcell UO2 pellet has a microstructure where a metal wall is connected to overcome the low thermal conductivity of the UO2 fuel pellet. It has been verified that metallic microcell fuel pellets provide an impressive reduction of the fuel centerline temperature through a Halden irradiation test. However, it is difficult to predict the effective thermal conductivity of these pellets and researchers have had to rely on measurement and use of the finite element method. In this study, we designed a unit microcell model using a thermal resistance circuit to calculate the effective thermal conductivity on the basis of the microstructure characteristics by using the aspect ratio and compared the results with those of reported metallic UO2 microcell pellets. In particular, using the thermal conductivity calculated by our model, the fuel centerline temperature of Cr microcell pellets on the 5th day of the Halden irradiation test was predicted within 6% error from the measured value.

투습발수직물과 보온단열소재의 열 및 수분전달 특성 (Thermal and Water Transmission Properties of Vapor Permeable Water Repellent Fabrics and Thermal Insulation Batting Materials)

  • 조길수;최종명;이정주;이선우
    • 한국의류학회지
    • /
    • 제16권2호
    • /
    • pp.237-244
    • /
    • 1992
  • The purpose of this study was to comparatively evaluate thermal and water transmission properties of several vapor permeable water repellent (VPWR) fabrics and synthetic battings that became available in recent years. Five VPWR fabrics evaluated were Hipora in three coating variants, $Gore-Tex^{\circledR}$ and $Aitace^{\circledR}$. Battings evaluated were $Viwarma^{\circledR}$, $Uniwarmr^{\circledR}$, $Thinsulate^{\circledR}$, and $Airseal^{\circledR}$ Thermal resistance and water vapor transmission were measured for each fabric and batting and in all combinations. Thermal resistance at zero and 37 cm/sec air velocity was determined by the Thermo Labo II technique for simultaneously measuring conduction and radiation heat transfer. Water vapor transmission over 24 hours was measured by a modified weight-gain method in a compact humid chamber at conditions simulating the clothing climate under heavy exercise ($40{\pm}1^{\circ}C$, $90{\pm}2\%$ R.H., and 0.5 m/sec air velocity). Fabric porosity was calculated from fiber density and fabric weight, thickness, and area. Thermal resistance results for the fabrics showed the effectiveness of coatings in inhibiting heat transfer. Measurements taken in wind were: $31.1\~37.6\%$ for $Hipora^{\circledR}$ variants; $31.0\%$ for $Gore-Tex^{\circledR}$; and $18.4\%$ for $Aitaca^{\circledR}$ Measurements without wind were higher but in the same order. Water vapor transmission results were in reverse order: $Aitac^{\circledR}$, $8.8 kg/m^{2};\;Gore-Tex^{\circledR}$, 6.4 kg/$m^{2}$; and $Hipora^{\circledR},\;4.4\~6.0\;kg/m^{2}$. In general thermal resistance increased with porosity. For battings, the thermal resistance with wind results were: $Viwarmu^{\circledR}$, $65.0\%;\; Thinsulate^{\circledR}$, $62.0\%$; $Uniwarm^{\circledR}$, $61.0\%$; and $Airseala^{\circledR},\;53.1\%$. Thermal resistance was proportional to thickness. Thermal resistance of fabric-batting combinations were $20\%$ higher than those of the battings only. Water vapor transmission for combinations was mainly affected by that for the VPWR fabric used.

  • PDF

가스터빈의 열차폐용 탑코팅 설계기술 (Top Coating Design Technique for Thermal Barrier of Gas Turbine)

  • 구재민;이시영;석창성
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.802-808
    • /
    • 2013
  • Thermal barrier coating (TBC) is used to protect substrates and extend the operating life of gas turbines in power plant and aeronautical applications. The major causes of failure of such coatings is spallation, which results from thermal stress due to a thermal expansion coefficient mismatch between the top coating and the bond coating layers. In this paper, the effects of the material properties and the thickness of the top coating layer on thermal stresses were evaluated using the finite element method and the equation for the thermal expansion coefficient mismatch stress. In addition, we investigated a design technique for the top coating whereby thermal resistance is exploited.

유한요소법을 이용한 내화전선의 열해석에 관한 연구 (A Study on the Thermal Analysis of Fire-Resistance Cable using FEM)

  • 오홍석;이상호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.338-343
    • /
    • 2004
  • In general, the insulation and protective sheaths on electrical conductors are made of combustible substances like PVC, natural or synthetic rubbers, and other organic or synthetic materials. When an electrical fire starts due to overheating of conductors/joints or sparking/arcing, the first thing to ignite is usually the insulation on the cables. When the insulation bums, the produced fumes are very toxic. To solve the problem, we have surely need the fire resistance cable that doesn't bum in a high temperature and emit toxic fume for operating a disaster prevention installation. In this paper, we have simulated the thermal analysis for the fire resistance cable according to the values of current in a overload and a short, and the values of outside flame with the fire resistance cable of the L's company product(600 V, FR-8 : Four Core) using the finite element method(Flux2D).

마이크로플루트 골판지의 열전도도 및 전기저항 특성에 대한 연구 (Studies on Thermal Conductivity and Electric Resistance Properties of Microflute Corrugated Paperboard)

  • 엄기증;조용민
    • 펄프종이기술
    • /
    • 제39권2호
    • /
    • pp.45-53
    • /
    • 2007
  • When micro flute corrugated paperboards are used for food packaging, they necessarily need to meet the requirements for the distribution, transportation, and storage of food. The requirements could vary ac-cording to the contents in the packaging boxes. Microflute corrugated packaging paperboard for hot foods such as just-made coffee and hamburger requires to have a decent resistance property against high temperature. Along with a recent trend for small-quantity-multi-item upgraded packaging, semiconductor products and consumer-electronic appliances become to be packed using the environmental friendly micro flute corrugated paperboard. In this case, the electric resistance property of the microflute corrugated paperboard becomes important. This study was carried out to investigate on the thermal conductivity and electric resistance properties of micro flute corrugated paperboard.

선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석 (Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method)

  • 이세균;우정선;노정근
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

AlN 분말을 이용한 방열 Sheet의 제조와 그 특성 (Preparation and Characteristics of Heat-releasing Sheet Containing AlN(alunimum nitride) Powder)

  • 김상문;이석문
    • 한국전기전자재료학회논문지
    • /
    • 제25권6호
    • /
    • pp.431-434
    • /
    • 2012
  • In this paper, heat-releasing sheets made of AlN powder and acryl binder as thermoset were prepared using tape casting method. The crystal structure and morphology, the thermal properties as nonvolatile solid content and thermal conductivity, and the surface resistance of heat-releasing sheet were measured by using X-ray diffractometer, field emission-scanning electron microscopy, thermo gravimetric analyzer and laser flash instrument, and surface resistance meter. It was proved that thermal conductivity is greatly affected by the content of binder in heat-releasing sheet. Superior thermal conductivity above 3.5 W/mK and suface resistance were obtained at heat-releasing sheet with above 90% of AlN powder.

Creation of Diamond/Molybdenum Composite Coating in Open Air

  • Ando, Yasutaka;Tobe, Shogo;Tahara, Hirokazu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1313-1314
    • /
    • 2006
  • For improvement of wear resistance property of atmospheric thermal plasma sprayed molybdenum (Mo) coating, diamond deposition on the atmospheric plasma sprayed molybdenum coating by the combustion flame chemical vapor deposition (CFCVD) has been operated. In this study, to diminish the thermal damage of the substrate during operation, a thermal insulator was equipped between substrate and water-cooled substrate holder. Consequently, diamond particles could be created on the Mo coating without fracture and peeling off. From these results, it was found that this process had a high potential in order to improve wear resistance of thermal sprayed coating.

  • PDF

$80Al_2O_3-20Al$ 복합재료의 내열충격성: 실험과 유한요소 해석 (Thermal Shock Resistance of $80Al_2O_3-20Al$ Composites: Experiments and Finite Element Analysis)

  • 김일수;신병철
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.201-204
    • /
    • 2000
  • Thermal shock resistance of 80Al2O3-20Al composite and monolithic alumina ceramics was compared. Fracture strength was measured by using a 4-pont bending test after quenching. Thermal stresses of the ceramics and ceramic-metal composites were calculated using a finite element analysis. The bending strength of the Al2O3 ceramics decreased catastropically after quenching from 20$0^{\circ}C$ to $0^{\circ}C$. The bending strength of the composite also decreased after quenching from 200~2$25^{\circ}C$, but the strength reduction was much smaller than for Al2O3. The maximum thermal stress occured in the monolithic alumina ceramics when exposed to a temperature difference of 20$0^{\circ}C$ was 0.758 GPa. The same amount of stress occured in the Al2O3-Al composite when the temperature difference of 205$^{\circ}C$ used.

  • PDF

Properties of Polysiloxane Coated Borosilicate Lining Blocks

  • Song, Jeongho;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.525-529
    • /
    • 2017
  • To improve the thermal resistance of a porous borosilicate lining block, we prepared and applied polysiloxane-fumed silica-ethanol slurry on top of the block and fired the coating layer using a torch for 5 minutes at $800^{\circ}C$. We conducted magnified characterizations using a microscope and XRD analysis to observe phase transformations, and TGA-DTA analysis to determine the thermal resistance. Thermal characterizations showed improved heat resistance with relatively high polysiloxane content slurry. Cross-sectional optical microscope observation showed less melting near the surface and decreased pore formation area with higher polysiloxane content slurry. XRD analysis revealed that the block and coating layer were amorphous phases. TGA-DTA analysis showed an endothermic reaction at around $550^{\circ}C$ as the polysiloxane in the coating layer reacted to form SiOC. Therefore, coating polysiloxane on a borosilicate block contributes to preventing the melting of the block at temperatures above $800^{\circ}C$.