• 제목/요약/키워드: Thermal reliability

검색결과 1,055건 처리시간 0.031초

63Sn-37Pb 땜납의 크리프 특성에 관한 연구 (A Study on the Creep Characteristics of Solder of 63 Sn-37Pb)

  • 이억섭;김의상
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.138-144
    • /
    • 2004
  • The initiation and the propagation of solder joint crack depend on its environmental conditions, such as high temperature creep and thermal fatigue. Creep is known to be the most important factor for the mechanical failure of solder joints in micro-electronic components and micro-systems. This is mainly caused by the different thermal expansion coefficients of the materials used in the micro-electronic packages. To determine the reliability of solder joints and consequently the electronic components, the characterization of the creep behavior of this group of materials is crucial. This paper is to apply the theory of creep into solder joints and to provide related technical information needed for evaluation of reliability of solder joint to failure. 63Sn-37Pb solder was used in this study. This paper experimentally shows a way to enhance the reliability of solder joints.

가속 시험을 통한 솔더조인트의 건전성 평가

  • 명노훈;이억섭;김동혁
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2004년도 정기학술대회
    • /
    • pp.221-226
    • /
    • 2004
  • The thermal stresses induced by difference in Coefficient of Thermal Expansion between FR-4 board and 63Sn-37Pb solder joint directly affect the reliability of 63Sn-37Pb solder joint. This research, thus, focuses to investigate the crack initiation and propagation behavior around solder joint by imposing a designed Acceleration Life Test Procedure on solder joint by using a newly manufactured Thermal Impact Experimental Apparatus. The fracture mechanism of the solder joint was found to be highly influenced by thermal stresses. The reliability of solder joint was evaluated by using a failure probability model in terms of varying parameters such as frequency and temperature. The relationship between failure probability and safety factor was also studied.

  • PDF

열 스트레스에 의한 고무 오링의 가속수명시험에 관한 연구 (Study on Accelerated Life-time Test of O-ring Rubber by Thermal Stress)

  • 신영주;정유경;최길영;신세문
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권1호
    • /
    • pp.31-43
    • /
    • 2007
  • The function of O-ring seals is to prevent leakage during the service life of the components in which they are installed. The life prediction of O-ring is very important at various industry fields. Generally, to evaluated the long-term performance of O-ring in severe environments has applied a life prediction technique based on accelerated life test (ALT). In this work, Accelerated thermal aging test(l20, 130, 140, $150^{\circ}C$) of O-ring was applied for life prediction of O-ring. The property changes after thermal aging test was measured using TGA, DSC, FT - IR, Video Microscope and SEM. Shape parameter and life prediction were obtained using MINITAB program.

  • PDF

카본 CCL이 적용된 PCB의 열거동 및 신뢰성 특성 연구 (A Study on Thermal Behavior and Reliability Characteristics of PCBs with a Carbon CCL)

  • 조승현;김정철;강석원;성일;배경윤
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.47-56
    • /
    • 2015
  • 본 논문에서는 HDI(High Density Interconnection) 기판의 코어로 사용될 수 있는 카본 CCL(Copper Claded Layer)의 열거동 및 신뢰성 특성을 실험과 CAE를 이용한 수치해석을 통해 평가하였다. 카본 CCL의 특성평가를 위해 기존 FR-4 코어와 heavy cu 코어와 비교하였다. 연구결과에 의하면 pitch계열 카본코어가 적용된 PCB의 휨강도가 가장 높고 온도에 따른 변형량이 가장 낮았다. 또한, HDI 신뢰성평가 기준의 TC(Thermal Cycling), LLTS(Liquid-to-Liquid Thermal Shock), Humidity 실험을 통해 카본코어가 적용된 PCB는 신뢰성이 확보되었음을 확인하였다. 카본 파이버에 의한 불균일한 비아홀의 표면형상 여부와 드릴비트 마모 가능성을 분석하였는데 비아홀의 표면은 균일하고, 드릴비트의 표면도 매끄러워 카본 CCL의 우수한 드릴가공성도 확인하였다.

위성 데이터 전송용 2축 짐벌식 X-band 안테나 구동용 전장품 APD 열 해석 (Thermal Analysis of APD Electronics for Activation of a Spaceborne X-band 2-axis Antenna)

  • 하헌우;강수진;김태홍;오현웅
    • 항공우주시스템공학회지
    • /
    • 제10권2호
    • /
    • pp.1-6
    • /
    • 2016
  • The thermal analysis of electronic equipment is required to predict the reliability of electronic equipment being loaded on a satellite. The transient heat transfer of electronic equipment that was developed recently has been generated using a large-scale integration circuit. If there is a transient heat transfer between EEE(Electric, Electronic and Electro mechanical) parts, it may lead to failure the satellite mission. In this study, we performed the thermal design and analysis for reliability of APD(Antenna Pointing Driver) electronics for activation of a spaceborne X-band 2-axis antenna. The EEE parts were designed using a thermal mathematical model without the thermal mitigation element. In addition, thermal analysis was performed based on the worst case for verifying the reliability of EEE parts. For the thermal analysis results, the thermal stability of electronic equipment has been demonstrated by satisfying the de-rating junction temperature.

TSV 기반 3차원 소자의 열적-기계적 신뢰성 (Thermo-Mechanical Reliability of TSV based 3D-IC)

  • 윤태식;김택수
    • 마이크로전자및패키징학회지
    • /
    • 제24권1호
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.

Optimal maintenance scheduling of pumps in thermal power stations through reliability analysis based on few data

  • Nakamura, Masatoshi;Kumarawadu, Priyantha;Yoshida, Akinori;Hatazaki, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.271-274
    • /
    • 1996
  • In this paper we made a reliability analysis of power system pumps by using the dimensional reduction method which over comes the problem due to unavailability of enpugh data in the actual systems under many different operational environments. Hence a resonable method was proposed to determine the optimum maintenance interval of given pump in thermal power stations. This analysis was based on an actual data set of pumps for over ten years in thermal power stations belonged to Kyushu Electric Power Company, Japan.

  • PDF

열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응 (The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles)

  • 오철민;박노창;한창운;방만수;홍원식
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Fe-Ni 합금 클래드 리드 프레임을 이용한 전자 재료 접합부의 품질향상과 그 신뢰성 (Quality improvement on joints of electronic materials and its reliability by Fe-Ni alloy clad lead frame)

  • 신영의;최인수;안승호
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.82-95
    • /
    • 1995
  • This paper discusses distribution of thermal stress, strain at near the joint and investigates the reliability of solder joints of electronic devices on a printed circuit board. As Electronic devices are composed of different materials, thermal stresses generate at near the interface, such as solder joints and interface between lC device and lead frame pad due to the differences of thermal expansion coefficients, As results of thermal stress, strain, micro crack often occurs thermal fatigue fracture at the interface of different materials, The initiation and propagation of micro crack depend on the environmental conditions, such as storage temperature and thermal cycling. Finally, this paper experimentally shows a way to suppress micro cracks by using Fe-Ni alloy clad lead frame, and investigates crack and thermal fatigue fracture of TSOP(Thin small outline package) type on printed circuit board.

  • PDF

A study of guaranteeing reliability for IC of electronic instruments according temperature

  • Yoon, Geon;Park, Yong-Oon;Kwon, Soon-Chang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.320-323
    • /
    • 2005
  • This paper discusses heat problem of IC, which composes the electronic instruments, to guarantee reliability of electronic instruments. And also proposes the unified equivalent model for various electronic instrument products to guarantee reliability and life of its parts. Because electronic instruments are down sizing and operated with high frequency, the internal temperature of electronic instruments is rising steadily. The internal temperature of the electronic instruments gives a big effect to electronic instrument's reliability and life. The semiconductor parts are the representative heat generation parts because of its complicated function, high frequency and high density. Consequently, guaranteeing reliability and life of electronic semiconductor is the important start point in securing the reliability and life of the electronic instrument product. Unfortunately, there are many factors, which affect heat dissipation efficiency. The heat dissipation efficiency follows the environment where the electronic instrument products are used. Therefore it is very difficult to define reliability and life of the electronic manufactures. Electronic instrument products are composed of printed circuit board (PCB), integrated circuit (IC), resistance, and capacitor and so on. And there are superposed thermal resistances, because the parts are arrayed on the printed circuit board (PCB), Therefore the total thermal resistance is variable. Consequently it cannot have same thermal model for each electronic instrument products. In the next part, we propose the unified equivalent model for various electronic instruments. And using the proposed equivalent model proofs the method for analysis reliability of electronic parts.

  • PDF