• Title/Summary/Keyword: Thermal regeneration

Search Result 99, Processing Time 0.041 seconds

Thermodynamic Performance Analysis of Regenerative Organic Rankine Cycle using Turbine Bleeding (터빈 추기를 이용한 재생 유기랭킨사이클의 열역학적 성능 해석)

  • KIM, KYOUNG HOON;HWANG, SEON;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • This paper presents a thermodynamic performance analysis of regenerative organic Rankine cycle (ORC) using turbine bleeding to utilize low-grade finite thermal energy. Refrigerant R245fa was selected as the working fluid. Special attention is paid to the effects of the turbine bleeding pressure and the turbine bleed fraction on the thermodynamic performance of the system such as net power production and thermal efficiency. Results show that the thermal efficiency has an optimum value with respect to the turbine bleeding pressure and the net power production is lower than the basic ORC while the thermal efficiency is higher.

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

Spent-GAC Regeneration Using Variable Frequency Sono-Fenton Oxidation (가변 주파수 Sono-Fenton 산화를 이용한 Spent-GAC 재생기술)

  • Joo, Soobin;Lee, Sangmin;Kim, Hyungjun;Shim, Intae;Kim, Heejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.449-458
    • /
    • 2023
  • As an adsorption technology for dissolved organic matter, the adsorption capacity of granular activated carbon, GAC, can be applied, but activated carbon whose adsorption capacity is significantly reduced by use is inevitably replaced or regenerated. However, due to the economics of replacement cost, thermal regeneration method is used commercially, but high energy cost and loss of activated carbon occur under high temperature conditions above 800℃. In this study, the Sono-Fenton method, a multi-oxidation technology that combines Fenton oxidation and ultrasonic oxidation, was applied to improve the regeneration efficiency of spent GAC used to treat dissolved organic matter in combined sewer overflows (CSOs), and the regeneration efficiency of spent GAC by oxidant and ultrasonic frequency was investigated. In the applied Sono-Fenton treatment, the highest regeneration efficiency of 68.5% was obtained under the regeneration conditions of Fe2+ 10 mmol/L, H2O2 concentration 1,000 mmol/L, ultrasonic treatment time of 120 min, and ultrasonic frequency of 40 kHz. And similar efficiency was also obtained at 750 kHz, while ultrasonic waves of other frequencies had poor regeneration efficiency, and the magnitude of frequency and GAC regeneration efficiency did not show a linear relationship. In the case of continuous operation of the GAC adsorption tower with CSOs prepared by diluting raw sewage, about 700 hours of operation without regeneration was possible, and as a result of applying one Sono-Fenton treatment, 40-70% CODcr removal efficiency was obtained during a total of 1,000 hours of GAC adsorption operation.

New Technology with Porous Materials: Progress in the Development of the Diesel Vehicle Business

  • Ohno, Kazushige
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.497-506
    • /
    • 2008
  • The long time of twenty years has passed since Diesel Particulate Filter (DPF) was proposed before the practical use. The main factors that DPF has been put to practical use in this time, are the same time proposal of the evaluation method of SiC porous materials linked to he performance on the vehicle, and that the nature of thermal shock required for the soot regeneration (combustion of soot) in the DPF is different from the conventional requirement for the rather rapid thermal shock. For the requirements, these includ demonstrating utmost the characteristic of SiC's high thermal conductivity, and overcoming the difficulty of thermal expansion of SiC-DPF by dividing the filter into segments binding with the cement of lower Young's modulus, and the innovation of technology around the diesel exhaust system such as Common-Rail system. As the results of these, the cumulative shipments of SiC-DPF have reached about 5 million, and it goes at no claim in the market.

The Study on Thermal Analysis and Thermodynamic Characteristics of Spinel Compounds(ZnCo2O4, NiCo2O4) (스피넬 구조를 가지는 전이금속화합물(ZnCo2O4, NiCo2O4)의 열적 분석 및 열역학적 특성 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Chul-Hyun;Jang, Won-Cheoul;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.192-197
    • /
    • 2010
  • The spinel compound was obtained by the thermal decomposition of Zn-Co and Zn-Ni gel prepared by sol-gel method using oxalic acid as a chelating agent. The formation of spinel compound has been comfirmed by thermogravimetric analysis (TGA), x-ray powder diffraction (XRD) and infrared spectroscopy (IR). The particle size of 13 nm~16 nm was calculated by Scherrer's equation. The sol-gel method provides a practicable and effective route for the synthesis of the spinel compound at low temperature ($350^{\circ}C$). The kinetic parameters such as activation energy (Ea) and pre-exponential factor (A) for each compound were found by means of the Kissinger method and Arrhenius equation. The decomposition of spinel compound has an activation energy about 155 kJ/mol. Finally, the thermodynamic parameters (${\Delta}G^{\varphi}$, ${\Delta}H^{\varphi}$, ${\Delta}S^{\varphi}$) for decomposition of spinel compound was determined.

Impact Assessment on the Change of Thermal Environment, According to the Hydraulic Characteristic Urban Regeneration Stream: Cheonggyecheon Case Study (도심재생하천 내 수리적 특성이 열환경 변화에 미치는 영향 평가: 청계천을 대상으로)

  • Kim, Jeong-Ho;Lee, Ju-Seung;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.14 no.2
    • /
    • pp.3-25
    • /
    • 2015
  • Our goal is to verify how changes in water's hydraulic characteristics after urban regeneration stream can affect any possible transformation of its thermal environment. To that end, we analyzed changes in numerous physical characteristics the subject stream along with the meteorological factors and thermal environment affected by it. Cheonggyecheon was selected as our subject as it is a great example of successful urban regeneration stream. As for physical characteristics, we allocated Type I (0.0%) and Type II (20.2%), depending on the green coverage ratio. As for numerical characteristics, at the point of Ba in which the riffle ends, the water temperature fell by $0.2^{\circ}C$ and the flow increased from 0.7m/s to 0.9 m/s with the dissolved oxygen increasing from 0.5mg/L to 0.6mg/L. As for meteorological factors surrounding the subject stream, the temperature dropped from $1.1^{\circ}C$ to $1.4^{\circ}C$ on average and relative humidity increased from 6.6% to 8.7%. Furthermore, there was an irregular change in wind velocity. According to the result of the Wet Bulb Globe Temperature (WBGT), the change in the values of Type I and II inside and on the surface of the subject stream was negligible. The downstream temperature in Type I fell from $0.3^{\circ}C$ to $0.6^{\circ}C$ and by $0.8^{\circ}C$ in Type II. As for vertical cooling effect, the change of water level was 120cm in Type I and 140cm in Type II. As for horizontal cooling effects, the value of Type I was increased from the point of Ba where the riffle ends and the value of Type II was on a steady decline.

  • PDF

An Experimental Study on Thermal Regeneration of Filter Trap by Diesel Engine Performance and Characteristics of Exhaust Pipe (디젤기관의 성능과 배기관 특성에 의한 필터트랩의 열재생에 관한 실험적 연구)

  • 오용석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.50-55
    • /
    • 1999
  • The exhaust emissions from diesel vehicle are known to be harmful to human health and environment. Recently, one of the most environment problems is particulate matter. In this study, through the actual exper iment and heat transfer of exhaust pipe in light duty diesel engine equipped with the ceramic filter trap of throttling type, following results are obtained. 1. In case of light duty diesel engine equipped with ceramic filter trap of throttling type, Power and torque of engine were decreased about 5%, compared with the case without trap system. It means that was not so much effect on base engine performance.2. If the length of exhaust pipe when equipping with ceramic filter trap is suitably controlled, the range of regeneration will be expand much more.3. Particulate matter reduction efficiency of ceramic filter trap system was about 70%-80%, so it was proved a good system to reduce particulate matter.In experiment, test was conducted to estimate engine emission in 2,476cc light duty diesel engine which was equipped with ceramic filter trap.

  • PDF

Performance Evaluation of an Electrohydrodynamic Spray Nozzle for Regeneration of Particulate Matter on Diesel Particulate Filter (경유차 입자상물질 저감필터(DPF) 재생용 전기수력학적 연료 후분사 노즐의 미립화 특성 평가 및 수치해석을 이용한 액적 입경별 연소 특성 평가)

  • Jeong, Seonghun;Park, Sung-Eun;Kim, Min-Jung;Cho, Hyung-Jei;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.55-68
    • /
    • 2012
  • Particulate matters (PM) which are collected into a diesel particulate filter (DPF) system have to be periodically removed by thermal oxidation. In this report, we fabricated an electrohydrodynamic-assisted pressure-swirl nozzle to spray diesel droplets finer. Atomization performance of the nozzle was evaluated using both experimental and numerical methods. Two types of nozzle designs, the charge induction type and the charge injection type, were tested. While the former generated diesel droplets of $400\;{\mu}m$ at an applied electric potential over 10 kV, the latter presented the droplets smaller than $23\;{\mu}m$ at an applied electric potential of 8 kV. The numerical simulation results showed that the reduced size of droplets caused higher evaporation of droplets and therefore the increased temperature, which would eventually increase the regeneration performance of the DPF system.