• 제목/요약/키워드: Thermal profile

검색결과 472건 처리시간 0.024초

열간압연 공정에서 롤 프로파일 예측모델 향상 (Improvement of Roll Profile Prediction Model in Hot Strip Rolling)

  • 정제숙;유종우;박해두
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

페어링 노즈콘에 대한 공력가열 시험 (Aerodynamic Heating Test of Fairing Nose-Cone)

  • 최상호;김성룡;김인선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2534-2539
    • /
    • 2007
  • Launch vehicles are exposed to aerodynamic heating conditions while flying at high Mach numbers in the atmosphere. In this study aerodynamic heating test for fairing nose-cone was done using ATSF(Aerodynamic Thermal Simulation Facility) and Engineering Model for fairing. ATSF is a facility that can simulate given temperature profile using about 4,000 halogen heaters on fairing model. Aerodynamic heating profile is got from result of thermal analysis using MINIVER, Thermal Desktop and SINDA/FLUINT. After aerodynamic heat test, it is found that initial temperature of fairing inner surface and thickness of BMS has important effects on temperature of fairing inner surface. Also it is confirmed that maximum temperature of fairing nose-cone inner surface during flight is lower than allowable temperature limit. Later, thermal correlation between thermal analysis and experimental results will be done using aerodynamic heating test result

  • PDF

KSLV-I 페어링 공력 가열 시험 (Aerodynamic Heating Test of Payload Fairing of KSLV-I)

  • 최상호;김성룡;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.448-451
    • /
    • 2008
  • KARI is developing a satellite launch vehicle that is called KSLV(Korea Space Launch Vehicle)-I. During the flight, launch vehicles are exposed to aerodynamic heating conditions while flying at high Mach numbers in the atmosphere. KARI constructed Aerodynamic Thermal Simulation Facility to simulate aerodynamic heating on the ground. ATSF is a facility that can simulate given temperature profile using about 4,000 halogen heaters on fairing model. Aerodynamic heating profile is got from result of thermal analysis using MINIVER, Thermal Desktop, and SINDA/FLUINT. Aerodynamic heating test of fairing of KSLV-I was done using engineering model of payload fairing and Aerodynamic Thermal Simulation Facility. It was found that thermal analytic results show good agreement with aerodynamic heating test results within 6$^{\circ}$C at fairing inner surface. Also it was confirmed that maximum temperature of fairing nose-cone inner surface during flight is lower than allowable temperature limit.

  • PDF

연삭가공시 온도해석을 통한 열변형 예측 (A Study on the Prediction of Thermal Deformation Using Temperature Analysis in Surface Grinding Process)

  • 김강석;곽재섭;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.19-23
    • /
    • 1995
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground durfae represents a concave profile. In the analysis a simple model of the temperature distribution, based on the results of a finite element method, is applied. Theanalyzed results are compared with experimental results in surface grinding. The main results obtained are as follows: (1) The temperature distribution of a workpiece by FEM has a good agreement with the experimental results. (2) The bending moment by generated heat causes a convex deformation of the workpiece and it leads to a concave profile of the grinding surface.

  • PDF

열간 압연 시 워크 롤의 열 변형 정밀 예측을 위한 유한요소법 기반의 온라인 모델 개발 (The development of FE-based on-line model for the precise prediction of work roll thermal profile in hot strip rolling)

  • 최지원;황한동;이중형;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.329-335
    • /
    • 2004
  • An, FE-based, on-line model is presented for the rapid and precise prediction of roll thermal profile in hot strip rolling. The validity of the model is demonstrated through comparison with FE-based off-line model which was verified by measurements. Also demonstrated is its capability of reflecting the effect of diverse process variables.

  • PDF

저전력 분야 응용을 위한 32nm 금속 게이트 전극 MOSFET 소자의 게이트 workfunction 의 최적화 (Gate Workfunction Optimization of a 32 nm Metal Gate MOSFET for Low Power Applications)

  • 오용호;김영민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1974-1976
    • /
    • 2005
  • The feasibility of a midgap metal gate is investigated for 32nm MOSFET low power applications. The midgap metal gate MOSFET is found to deliver a driving current as high as a bandedge gate one for the low power applications if a proper retrograde channel is used. An adequate design of the retrograde channel is essential to achieve the performance requirement given in ITRS roadmap. In addition, a process simulation is run using halo implants and thermal processes to evaluate the feasibility of the necessary retrograde profile in manufacturing environments. From the thermal budget point of view, the bandedge metal gate MOSFET is more vulnerable to the following thermal process than the midgap metal gate MOSFET since it requires a steeper retrograde doping profile. Based on the results, a guideline for the gate workfunction and the channel profile in the 32 nm MOSFET is proposed.

  • PDF

Experimental analysis of thermal gradient in concrete box girder bridges and effects of polyurethane insulation in thermal loads reduction

  • Raeesi, Farzad;Heydari, Sajad;Veladi, Hedayat
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.645-654
    • /
    • 2022
  • Environmental thermal loads such as vertical and lateral temperature gradients are significant factors that must be taken into account when designing the bridge. Different models have been developed and used by countries for simulating thermal gradients in bridge codes. In most of the codes only vertical temperature gradients are considered, such as Iranian Standard Loads for Bridge code (ISLB), which only considers the vertical gradient for bridge design proposes. On the other hand, the vertical gradient profile specified in ISLB, has many lacks due to the diversity of climate in Iran, and only one vertical gradient profile is defined for whole Iran. This paper aims to get the both vertical and lateral gradient loads for the concrete box girder using experimental analysis in the capital of Iran, Tehran. To fulfill this aim, thermocouples are installed in experimental concrete segment and temperatures in different location of the segment are recorded. A three dimensional finite element model of concrete box-girder bridge is constructed to study the effects of thermal loads. Results of investigation proved that the effects of thermal loads are not negligible, and must be considered in design processes. Moreover, a solution for reducing the negative effects of thermal gradients in bridges is proposed. Results of the simulation show that using one layer polyurethane insulation can significantly reduce the thermal gradients and thermal stresses.

Elasto-plastic thermal stress analysis of functionally graded hyperbolic discs

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.587-593
    • /
    • 2017
  • The objective of this analytical study is to calculate the elasto-plastic stresses of Functionally Graded (FG) hyperbolic disc subjected to uniform temperature. The material properties (elastic modulus, thermal expansion coefficient and yield strength) and the geometry (thickness) of the disc are assumed to vary radially with a power law function, but Poisson's ratio does not vary. FG disc material is assumed to be non-work hardening. Radial and tangential stresses are obtained for various thickness profile, temperature and material properties. The results indicate that thickness profile and volume fractions of constituent materials play very important role on the thermal stresses of the FG hyperbolic discs. It is seen that thermal stresses in a disc with variable thickness are lower than those with constant thickness at the same temperature. As a result of this, variations in the thickness profile increase the operation temperature. Moreover, thickness variation in the discs provides a significant weight reduction. A disc with lower rigidity at the inner surface according to the outer surface should be selected to obtain almost homogenous stress distribution and to increase resistance to temperature. So, discs, which have more rigid region at the outer surface, are more useful in terms of resistance to temperature.

다공성 물질의 열 및 습도 전달에 관한 유한요소 해석 (Finite Element Analysis of Heat and Moisture Transfer in Porous Materials)

  • 이호림;금영탁;송창섭;오근호
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.158-167
    • /
    • 1999
  • Heat and moisture transfer associated with porous materials are investigated. The heat and moisture transfer in porous materials caused by the interaction of moisture gradient, temperature gradient, conduction, and evaporation are considered. The variations of temperature and moisture not only change the volume but also induce the hygro-thermal stress. The finite element formulation for solving the temperature and moisture transfer as well as the associated hygro-thermal stresses is developed. In order to verify the finite element formulation, the heat and moisture moving boundary problem in a half space and the hygro-thermo-mechanical problem in an infinite plate with a circular hole are analyzed. Temperature profile, moisture profile, and hygro-thermal stresses are compared with those of analytic solution and other investigator. Good agreements are examined

  • PDF

열팽창을 고려한 심압대의 실험적 설계에 관한 연구 (A Study on the Experimental Design of Tail stock with Consideration Thermal Expansion)

  • 김경석
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.123-129
    • /
    • 2000
  • To make high accuracy cutting of long materials and a piston for the engines it must be necessary to keep the thermal stability of spindle and tail stock in CNC lathe. If a object is clamped at the ends the thermal expansion and cutting process generate the deflection of cutting objects. Especially in the case of a piston ring piston ovality and piston profile the influences of deflection are very serious. In order to solve the problems most of piston cutting are worked under simply support. However the prob-lems exist yet. Therefore this paper proposes the new structure of tail stock which can compensates the deflection.

  • PDF