• Title/Summary/Keyword: Thermal prediction program

Search Result 88, Processing Time 0.022 seconds

Simulation of the Hydrogen Conversion Rate Prediction for a Solar Chemical Reactor (태양열 화학반응기의 수소전환효율 예측 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.294-299
    • /
    • 2008
  • Steam reforming of methane is the most wide spread method for hydrogen production. It has heed studied more than 60 years. methane reforming has advantages in technological maturity and economical production cost. Using a high-temperature solar thermal energy is an advanced technology in Steam reforming process. The synthesis gas, the product of the reforming process, can be applied directly for a combined cycle or separated for a hydrogen. In this paper, hydrogen conversion rate of a solar chemical reactor is calculated using commercial CFD program. 2 models are considered. Model-1 is original model which is designed from the former researches. And model-2 is ring-disk set of baffle is inserted to enhance the performance. The solar chemical reactor has 3 inlet nozzle at the bottom of the side wall near quartz glass and an exit is located at the top. Methane and steam is premixed with 50:50 mole fraction and goes into the inside. Passing through the porous media, the reactants are conversed into hydrogen and carbon monoxide.

  • PDF

Thermal Stress Analysis of the Heat Generation for Mass Concrete Considering Creep Effect (크리이프를 고려한 매스콘크리트의 수화열에 대한 온도응력 해석)

  • Kim, Jin Keun;Lee, Jong Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.771-781
    • /
    • 1994
  • The heat generation of cement causes the internal temperature rise and volume change at early age, particulary in massive concrete structures. As the results of the temperature rise and restraint conditions, the thermal stress may induce cracks in concrete. Therefore, the prediction of the thermal stress is very important in the design and construction in order to control the cracks developed in mass concrete. In case of young concrete, creep effect by the temperature load is larger than that of old concrete. Thus, the effect of creep must be considered for checking the cracks, serviceability, durability and leakage. This paper is concentrated on the development of a finite element program which is capable of simulating the temperature history and the thermal stress considering creep and the modified elastic modulus due to inner temperature change and maturity. The analytical results in the inner parts highest important to control cracks are in good agreement with experimental data. Therefore this study may provide available method to control the cracks.

  • PDF

Development of a Computer Program Predicting Sterilization Effects on Target Microorganisms (살균 Target 미생물 사멸효과 예측 프로그램 개발)

  • 신해헌;김영준;조원일;최준봉;최동원
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.3
    • /
    • pp.180-186
    • /
    • 2003
  • In order to prediction of lethal effects on target microorganisms, this study was developed the program in the basis of Excel that was systemized with Visual Basic. This program was automatically calculated the lethal effects (L and Fo value) by using thermal characteristics (D and z value), kinetic model and mathematic model. For the selection of target microorganisms, we are selected two microorganisms because of spoilage increasing by acid production and decreasing quality of food, and heat resistance microorganisms. The target microorganisms were Bacillus cereus (D$_{121.1}$=0.0065 min, z=7.8$^{\circ}C$) and Bacillus subtilis (D$_{121.1}$=0.5 min, z =12$^{\circ}C$). The program was developed for the target microorganisms, and that was very useful for various microorganisms that direct introducing known D and z value.

Development of an Integrated Multizone Model for Indoor Air Environment Prediction (실내공기환경 예측을 위한 통합 다구획 모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.993-1003
    • /
    • 2008
  • Interior space in most buildings is divided into several zones. The most important factors relating to the indoor air environment are temperature, airflow, humidity, and contaminant concentration. An integrated multizone model to predict these environmental factors simultaneously was developed. Also, a computer program for this model was written by the language of VISUAL BASIC. The proposed model was applied to a apartment with five rooms that had been tested by Chung. Comparison of predicted results by this study with measured results by Chung showed that their variations were within 14% for airflow rates, 1% for temperatures, 12% for humidities, and 5% for concentrations. It was seen that the opening operation schedule of building has a significant effect on the air moisture md contaminant removal. Thus, this model may be available for predicting the indoor air environment and may be contributed to design the ventilation plan for controling of indoor air quality.

Aerodynamic Analysis of Passenger Car with High Accuracy Using H-refinement (H-분할법을 이용한 승용차의 고정도 공력특성 해석)

  • 김태훈;정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.33-41
    • /
    • 2000
  • Three dimensional flow fields around passenger car body was computed by PAM-FLOW, well-known and validated computer program for thermal and fluid analysis. Regarding the computational method, a Navier-Stokes solver based on finite element method with various turbulent models and adaptive grid technique (H-refinement)was adopted. The results were physically reasonable and compared with experimental data, giving good agreement. It was found that three dimensional flow simulation with H-refinement technique had potential for prediction of low fie이 around vehicle and the ability to predict vortex in the wake, which is vital for CFD to be used for automobile aerodynamic calculation.

  • PDF

A Dynamic Characteristic of the Multi-Inverter Heat Pump with Frosting (착상을 수반한 멀티 가변속 열펌프의 동특성)

  • ;;Shigeru Koyama
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.337-345
    • /
    • 2003
  • In the case of heat exchangers operating under frosting condition, the growth of frost layer causes the heat exchanger to increase the thermal resistance and pressure loss of the air flow. In this paper, a transient characteristic prediction model of the heat transfer for multi inverter heat pump with frosting on its surface was presented taking into account the change of the fin efficiency due to the growth of the frost layer. In this dynamic simulation program, which was peformed for a basic air conditioning system model, such as evaporator, condenser, compressor, linear electronic expansion valve (LEV) and bypass circuit. The theoretical model was driven from the obtained heat transfer coefficient and mass transfer coefficient, independently. And we consider heat transfer performance was only affected by a decrease of the wind flow area. The calculated results were compared with some cases of experiments for frosting conditions.

Prediction of Welding Stress and Deformation by 3D-FEM Analysis and Its Accuracy (3차원 유한요소해석에 의한 용접응력과 변형의 해석 및 정도)

  • 장경호;이상형;이진형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.11-17
    • /
    • 2000
  • ,An residual stress and out-of plane deformation produced by butt welding was analyzed by four kinds of 3D-FEM programs(Thermal El-P1 Analysis) developed by authors. The magnitude of deformation of perpendicular to the welding line generated by butt welding was large when the reduced integration method was used. This was because of removal of the locking phenomenon, which it was generally known that the stiffness of the shear component of out-of-plane was largely evaluated. And the magnitude of residual stress was analyzed by using the FEM program based on a large and small deformation theory was similar to that was analyzed by the redeced integration method.

  • PDF

A Study on the Prediction Modeling of Phase Transformation in the CGHAZ of Structural Steel Weld (구조용강 용접부 CGHAZ의 상변태 예측 Modeling에 관한 연구)

  • 조일영;이경종;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.74-84
    • /
    • 1998
  • The microstructures of the HAZ (Heat Affected Zone) are generally different from the base metal due to rapid thermal cycle during welding process. Particuraly, CGHAZ (Coarsened Grain Heat Affected Zone) near the fusion line is the most concerned region in which many metallurgical and mechanical discontinuities have been normally generated. A computer program by the numerical formularization of phase transformation during cooling with different rates was developed to generate the CCT diagram, and to predict microstructural (phase) changes in the CGHAZ. In order to verify simulated results, isothermal and continuous cooling transformation experiments were conducted. The simulated and experimental results showed that the developed computer model could successfully predict the room temperature microstructural changes (changes in volume fraction of phases) under various welding conditions (heat input & cooling rate $(Δt_{8/5})$).

  • PDF

Development and Sensitivity Analysis of Life Estimation Program for Turbine Rotors (터빈로터 수명예측 프로그램의 개발 및 민감도 분석)

  • Park, Jae-Sil;Seok, Chang-Sung;Suh, Myung-Won;Hong, Kyung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2654-2663
    • /
    • 2000
  • Steam turbine rotors are the most critical and highly stressed components of a steam power plant; therefore, the life expectancy of the turbine rotor is an important consideration for the safety of a steam power plant. The objective of this paper is to develop a life estimation program for turbine rotors for all possible operating conditions. For this purpose, finite element analysis was carried out for four normal operating modes (cold, warm, hot and very hot starts) using ABAQUS codes. The results are made into databases to evaluate the life expenditure for an actual operating condition. For any other possible abnormal operating condition, the operating data are transmitted to the server (workstation) through a network to carry out finite element analysis. Damage estimation is carried out by transmitting the finite element analysis results to the personal computer, and then the life expectancy is calculated.

Performance analysis of dual source heat pump system with single unit dual source evaporator (SUDS증발기를 사용한 2중열원 열펌프의 성능해석)

  • 우정선;이세균;이재효;박효순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.391-400
    • /
    • 1999
  • The efficiency and capacity of an air source heat pump system decrease as the ambient temperature drops. One strategy of avoiding the decrease of the efficiency and capacity in air source heat pump system is to switch to another thermal energy source. Water can be a good candidate for the heat source. This paper presents the results of the performance analysis of heat pump system with a single unit dual source(SUDS) evaporator The heat exchanger combines two separated evaporators into a single evaporator and the object of the SUDS evaporator is to recover energy from dual heat sources, i.e. air and water. Simulation program is developed for the dual source heat pump system with a SUDS evaporator and experimental data are obtained and compared with the simulation results. Differences in heating capacity and COP are 7% and 8% respectively. Simulation results are in good agreement with the test results. Therefore, the developed program is effectively used for the design and performance prediction of the dual source heat pump system with a SUDS evaporator.

  • PDF