• 제목/요약/키워드: Thermal power plants

검색결과 522건 처리시간 0.028초

스토리 뷰잉(Story-viewing)을 적용한 화력발전분야 안전교육 콘텐츠 연구 (A Study on Contents for Safety Training of the Thermal Power Plant to be Applied by Story Viewing)

  • 김유식;민설희;성윤학;박영제
    • 한국화재소방학회논문지
    • /
    • 제30권3호
    • /
    • pp.62-66
    • /
    • 2016
  • 화력발전소는 중대형사고의 발생위험이 높은 고위험군 건물로 다양한 원인에 의하여 크고 작은 화재 등이 발생하고 있어 화력발전소 현장에서는 '화력발전분야 현장조치 행동 매뉴얼'을 배포하고 정기적인 교육 및 훈련을 통하여 화재 등 재난발생률을 최소화하기 위하여 힘쓰고 있다. 그러나 현재 국내 5개 화력발전회사에서 사용되는 교육자료는 대부분 가독성 낮은 인쇄물(Hard Capy) 형태이며, 발전화사별, 사업소별로 상이하게 구성된 점이 있어 표준화 작업이 요구된다. 그러므로 본 연구에서는 국가 중대 기반시설인 발전소의 재난대응력을 향상하기 위한 방법으로 '화력발전분야 현장조치 행동 매뉴얼'의 '유류화재 전기화재 건물화재 설비화재 가스누출 대응 SOP' 5개 부분에 대하여 매뉴얼 표준화 작업을 진행하고, 이를 바탕으로 인쇄물(Hard Capy)형 재난매뉴얼을 보완할 수 있는, 스토리뷰잉(Story-viewing) 기법을 적용한 시각화 기반 화력발전분야 안전교육 콘텐츠를 제안하고자 한다.

SIMULATION OF THERMAL STRATIFICATION IN INLET NOZZLE OF STEAM GENERATOR

  • Ji, Joon-Suk;Youn, Bum-Su;Jeong, Hyun-Chul;Kim, Sang-Nyung
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.287-294
    • /
    • 2009
  • Due to thermal hydraulics phenomena, such as thermal stratification, various events occur to the parts of a nuclear power plant during their lifetimes: e.g. cracked and dislocated pipes and thermally fatigued, bent, and damaged supports. Due to the operational characteristics of the parts of the steam generator feedwater inlet horizontal pipe, thermal stratification takes place particularly frequently. However, the thermal stress due to thermal stratification at the steam generator feedwater inlet horizontal pipe was not reflected in the design stage of old plants(Kori Unit No.1, 2, 3 and 4, Yeonggwang Unit No. 1 and 2, and Uljin Unit No. 1 and 2; referred to as old-style power plants hereinafter). Accordingly, a verification experiment was performed for thermal stratification in the horizontal inlet nozzle steam generator of old-style plants. If thermal stratification occurred in the horizontal pipe of an old-style power plant, numerical analysis of the temperature distribution of the pipes and fluids was conducted. The temperature distributions were compared at the curved part of the pipe and the horizontal pipe before and after the installation of the improved thermal sleeves designed to alleviate thermal stress due to thermal stratification. The thermal stress reduction measure was proven effective at the steam generator inlet horizontal pipe and the curved part of the pipe.

PWR 원전 주조 스테인리스강 배관의 열취화 평가 (Evaluation of Thermal Embrittlement for Cast Austenitic Stainless Steel Piping in PWR Nuclear Power Plants)

  • 김철;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.96-101
    • /
    • 2004
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal embrittlement at the reactor operating temperature. The objective of this study is to summarize the method of estimating ferrite content, Charpy impact energy and J-R curve and to evaluate the thermal embrittlement of the cast austenitic stainless steel piping used in the domestic nuclear power plants. The result of evaluation, two domestic nuclear power plants used CF-8M and CF-8A material has adequate fracture toughness after saturation.

  • PDF

발전소 온배수의 수력에너지 개발에 관한 연구 (A Study on Hydro Energy Development of Discharged Cooling Water at the Power Plant)

  • 강금석;이대수;김지영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.813-818
    • /
    • 2005
  • Cooling seawater of thermal power plant which amounts about 5 cms per 100 MWe has hydro energy of about 3,000 kW at the thermal power plant complex, but this useful hydro energy has not been developed. Therefore, the feasibility study on hydro energy development of three power plants located in the southern and western coast of Korea was performed. Three target power plants are Samcheonpo, Boryeong and Hadong thermal power plant. The design head to discharge cooling water by gravity and the head caused by tidal level in the southwestern coastal area, could be used for the production of electric power. The various alternatives were studied and technical feasibility and economical efficiency were clearly proved.

  • PDF

원전 혼합배관 고주기 열피로 평가방법론의 적용성 평가 (Applicability Evaluation of Methodology for Evaluating High Cycle Thermal Fatigue of a Mixing Tee in Nuclear Power Plants)

  • 김선혜;성희동;최재붕;허남수;박정순;최영환
    • 한국압력기기공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.44-50
    • /
    • 2011
  • Turbulent mixing of hot and cold coolants is one of the possible causes of high cycle thermal fatigue in piping systems of nuclear power plants. A typical situation for such mixing appears in turbulent flow through a T-junction. Since the high cycle thermal fatigue caused by thermal striping was not considered in the piping fatigue design in several nuclear power plants, it is very important to evaluate the effect of thermal striping on the integrity of mixing tees. In the present work, before conducting detailed evaluation, three thermal striping evaluation methodology suggested by EPRI, JSME and NESC are analyzed. Then, a by-pass pipe connected to the shutdown cooling system heat exchanger is investigated by using these evaluation methodology. Consequently, the resulting thermal stresses and the fatigue life of the mixing tee are reviewed and compared to each other. Futhermore, the limitation of each methodology are also presented in this paper.

Detection of Thermal Effluent Discharged from Nuclear Power Plant Using Airborne MSS and Landsat ETM+

  • Han, Joung-Gyu;Chi, Kwang-Hoon;Yeon, Young-Kwang
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.323-329
    • /
    • 2002
  • The thermal effluent discharged from nuclear power plants can affect the offshore ecosystem change. The ability of measuring sea surface temperature in high resolution with Airborne MSS thermal spectral band(8.5 $\mu$m ~ 12.5 $\mu$m) and Landsat ETM+(10.4$\mu$m ~ 12.5 $\mu$m) gives us an information of spread range of thermal effluent. This information can be used as one of major factors fur analyzing the impact of the fish farm damage around the nuclear power plants. Every season from November 1999, this research has been conducted to investigate the extent of diffusion of thermal effluent discharged from KoRi, UlJin and WolSung Nuclear Power Plant located at the coastline of the East Sea of Korea.

  • PDF

Development for Life Assessment System for Pipes of Thermal Power Plants

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Doo-Young;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.583-588
    • /
    • 2016
  • The high-temperature steam pipes of thermal power plants are subjected to severe conditions such as creep and fatigue due to the power plant frequently being started up and shut down. To prevent critical pipes from serious damage and possible failure, inspection methods such as computational analysis and online piping displacement monitoring have been developed. However, these methods are limited in that they cannot determine the life consumption rate of a critical pipe precisely. Therefore, we set out to develop a life assessment system, based on a three-dimensional piping displacement monitoring system, which is capable of evaluating the life consumption rate of a critical pipe. This system was installed at the "M" thermal power plant in Malaysia, and was shown to operate well in practice. The results of this study are expected to contribute to the increase safety of piping systems by minimizing stress and extending the actual life of critical piping.

APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

  • Kim, Hyeonmin;Na, Man Gyun;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.737-752
    • /
    • 2014
  • As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

화력발전소의 미세먼지 배출특성 (Emission Characteristics of Fine Particles from Thermal Power Plants)

  • Park, Sooman;Lee, Gayoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.455-460
    • /
    • 2020
  • In order to identify the characteristics of fine particle emissions from thermal power plants, this study conducted measurement of the primary emission concentration of TPM, PM10 and PM2.5 according to Korea standard test method (ES 01301.1) and ISO 23210 method (KS I ISO 23210). Particulate matters were sampled in total 74 units of power plants such as 59 units of coal-fired power plants, 7 units of heavy oil power plants, 2 units of biomass power plant, and 6 units of liquid natural gas power plants. The average concentration of TPM, PM10, PM2.5 by fuel are 3.33 mg/m3, 3.01 mg/m3, 2.70 mg/m3 in coal-fired plant, 3.02 mg/m3, 2.99 mg/m3, 2.93 mg/m3 in heavy oil plant, 0.114 mg/m3, 0.046 mg/m3, 0.036 mg/m3 in LNG plant, respectively. These results of TPM, PM10 and PM2.5 were satisfied with the standards of fine dust emission allowance in all units of power plants, respectively. Also, this study evaluated the characteristics of fine particle emissions by conditions of power plants including generation sources, boiler types and operation years and calculated emission factors and then evaluated fine particle emissions by sources of electricity generation.

STS 316의 시효 열화 처리와 크리프 거동 특성 (Thermal Aging and Creep Rupture Behavior of STS 316)

  • 임병수
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.123-129
    • /
    • 1999
  • Although type 316 stainless steel is widely used such as in reactors of petrochemical plants and pipes of steam power plants and s attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants and is attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants the effect of precipitates which form during the long term exposure at service temperature on creep properties is not known sufficiently. In this study to investigate the creep properties and the influence of prior aging on the microstructure to form precipitates specimens were first solutionized at 113$0^{\circ}C$ for 20 minutes and then aged for different times of 0 hr, 100 hrs, 1000 hrs and 2200 hrs at 75$0^{\circ}C$ After heat treatments tensile tests both at room temperature and $650^{\circ}C$ and constant load creep ruptuere tests were carried out.

  • PDF