• 제목/요약/키워드: Thermal performance factors

검색결과 315건 처리시간 0.028초

A new thermal conductivity estimation model for weathered granite soils in Korea

  • Go, Gyu-Hyun;Lee, Seung-Rae;Kim, Young-Sang;Park, Hyun-Ku;Yoon, Seok
    • Geomechanics and Engineering
    • /
    • 제6권4호
    • /
    • pp.359-376
    • /
    • 2014
  • Thermal conductivity of ground has a great influence on the performance of Ground Heat Exchangers (GHEs). In general, the ground thermal conductivity significantly depends on the density (or porosity) and the moisture content since they are decisive factors that determine the interface area between soil particles which is available for heat transfer. In this study, a large number of thermal conductivity experiments were conducted for soils of varying porosity and moisture content, and a database of thermal properties for the weathered granite soils was set up. Based on the database, a 3D Curved Surface Model and an Artificial Neural Network Model (ANNM) were proposed for estimating the thermal conductivity. The new models were validated by comparing predictions by the models with new thermal conductivity data, which had not been used in developing the models. As for the 3D CSM, the normalized average values of training and test data were 1.079 and 1.061 with variations of 0.158 and 0.148, respectively. The predictions became somewhat unreliable in a low range of thermal conductivity values in considering the distribution pattern. As for the ANNM, the 'Logsig-Tansig' transfer function combination with nine neurons gave the most accurate estimates. The normalized average values of training data and test data were 1.006 and 0.954 with variations of 0.026 and 0.098, respectively. It can be concluded that the ANNM gives much better results than the 3D CSM.

태양열(太陽熱) 급탕(給湯)시스템의 최적설계(最適設計) 조건(條件)의 설정(設定)과 경제성(經濟性) 평가(評價)에 관한 연구(硏究) (A Study on the Establishment of Optimum Design Conditions and Economic Evaluation for Rot Water Heating Solar Energy System)

  • 이영수;이기우
    • 태양에너지
    • /
    • 제6권1호
    • /
    • pp.47-59
    • /
    • 1986
  • This paper presents the establishment of optimum design conditions and economic evaluation for solar hot water system. The aim of this study is to present thermal performance of solar heating systems and to determine their performance as a function of collector size, storage capacity, tilting of collector and other factors. By analyzing its performance under the various conditions, optimum design of solar heating system can be obtained. System performance are obtained monthly and yearly basis respectively. At the same time the economics of various systems are evaluated. For the computer simulation Mokpo, Kangnung, Chupungnyong and Seoul are selected for particular installation places. As a result, the optimal design condition of solar heating system considering the following factors such as installation angle of collector, capacity of storage tank, collector size in each place can be obtained as follows; (1) Installation angle of collector Tilt = lattitude (2) Capacity of storage tank Solar domestic hot water system : $45\;1/m^2$ Multifamily solar domestic hot water system : $35\;1/m^2$ (3) Collector size i) Solar domestic hot water system Seoul & Chupyungyong area : $11.52\;m^2$ Mokpo area : $8.64\;m^2$ ii) Multifamily solar domestic hot water system Seoul, Chupyungyong & Mokpo area : $345.6\;m^2$ Kangnung area : $259.2\;m^2$

  • PDF

Comparison study of heatable window film using ITO and ATO

  • Park, Eun Mi;Lee, Dong Hoon;Suh, Moon Suhk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.300.2-300.2
    • /
    • 2016
  • Increasing of the demand for energy savings for buildings, thermal barrier films have more attracted. In particular, as heat loss through the windows have been pointed out to major problems in the construction and automobile industries, the research is consistently conducted for improving the thermal blocking performance for windows. The main theory of the technology is reflect the infrared rays to help the cut off the inflow of the solar energy in summer and outflow of the heat from indoors in winter to save the energy on cooling and heating. Furthermore, this is well known for prevent glare, reduces fading caused by harmful ultraviolet radiation and easy to apply on constructed buildings if it made as a film. In addition to these advantages, apply the transparent electrode to eliminate condensation by heating. Generally ITO is used as a transparent electrode, but is has a low stability in environmental factors. In this study, ITO and its alternative, ATO, is deposited by sputtering system and then the characteristic is evaluated each material based thermal barrier thin film. The optical property was measured on wide range of wavelength (200 nm 2500 nm) to know the transparency in visible wavelength and reflectivity in IR wavelength range. The electrical property was judged by sheet resistivity. Finally the changes of the temperature and current of the deposited film was observed while applying a DC power.

  • PDF

가솔린엔진의 냉각계 유로 변경을 통한 금속면 온도 및 전열에 관한 실험적 연구 (An Experimental Study on the Metal Surface Temperature and Heat Transfer by Improving Gasoline Engine Cooling Passages)

  • 이재헌;류택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2002
  • Metal surface temperatures around the combustion chamber in a gasoline engine directly affect thermal durability and performance of the engine. Metal surface temperatures are influenced by many cooling factors such as drilled water passage, deflector, combustion chamber wall thickness, pillar, and coolant flow pattern. The object of this study is to learn how the coolant passages and coolant flow pattern in an engine influence to the engine metal surface temperature at engine full load and speed. From the test result, it is suggested a plan to reinforce the engine stiffness and to reduce the thermal stress simultaneously. Also, approaches are introduced to reduce the thermal load on the engine by adjusting the discharging direction from the water pump and by optimizing the water transfer holes in the cylinder head gasket. These methods and the optimized engine cooling system, which were suggested in this paper, were adapted for an engine in progress to eliminate the exhaust valve seat wear.

Cu/buffer layer/polyimide 시스템에서 Cr, 50%Cr-50%Ni 및 Ni 버퍼층에 따른 접착력 및 계면화학 (Adhesion Strength and Interface Chemistry with Cr, 50%Cr-50%Ni or Ni Buffer Layer in Cu/buffer Layer/polyimide System)

  • 김명한
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.119-124
    • /
    • 2009
  • In the microelectronics packaging industry, the adhesion strength between Cu and polyimide and the thermal stability are very important factors, as they influence the performance and reliability of the device. The three different buffer layers of Cr, 50%Cr-50%Ni, and Ni were adopted in a Cu/buffer layer/polyimide system and compared in terms of their adhesion strength and thermal stability at a temperature of $300^{\circ}C$ for 24hrs. A 90-degree peel test and XPS analysis revealed that both the peel strength and thermal stability decreased in the order of the Cr, 50%Cr-50%Ni and Ni buffer layer. The XPS analysis revealed that Cu can diffuse through the thin Ni buffer layer ($200{\AA}$), resulting in a decrease in the adhesion strength when the Cu/buffer layer/polyimide multilayer is heat-treated at a temperature of $300^{\circ}C$ for 24hrs. In contrast, Cu did not diffuse through the Cr buffer layer under the same heat-treatment conditions.

수치해석과 실험을 통한 Can type container 내부 상변화 물질의 열유체적 특성분석 (Numerical analysis of the thermal fluid characteristics of phase change material in can type container)

  • 허승민;현수웅;정희준;신동호
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.63-71
    • /
    • 2023
  • Energy storage and distribution technologies are emerging as important factors as research on renewable energy continues. Analyzing the thermal flow of phase change material inside a latent heat storage device and to predict the phase change time is an important part for improvement of thermal performance. However, most of the current research is based on the trial-and-error experimental investigation to measure the phase change time. Therefore, in this study, a can-type phase change material container was designed, and the numerical method for analyzing the thermal flow of phase change material was established and validated. The error rate of the phase change time between the numerical and experimental results was within 5%, which proves its reliability. As a result, the phase change finishing times were found to be 78 minutes with inlet fluid temperature of 80℃ during charging process, and 126 minutes with inlet fluid temperature of 9℃ during discharging process.

핀치포인트온도차에 따른 해양온도차발전용 유기랭킨사이클의 성능분석 (Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to pinch point temperature difference)

  • 김준성;김도엽;강호근;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.476-483
    • /
    • 2016
  • 해양온도차발전용 유기랭킨사이클은 해양의 표층수와 심층수사이의 온도차를 이용하여 발전하는 사이클이다. 작동유체는 유기랭킨사이클의 열역학적 성능에 있어 중요한 요소이다. 유기랭킨사이클의 열역학적 분석방법으로 핀치포인트분석이 있다. 본 연구는 열교환기내 핀치포인트온도차의 변화와 열원 및 열침의 출구온도의 변화에 따른 열역학적 성능분석을 수행하였다. 핀치포인트분석법에 따라 설계한 해양온도차발전용 단순랭킨사이클에 7종의 단일 작동유체를 적용하여 열역학적 성능을 분석하였다. 성능분석결과 열교환기에서 핀치포인트온도차와 열원 및 열침의 온도변화가 작을수록 사이클 총 비가역성 및 총 엑서지 파괴인자가 감소하였으며, 제2법칙 효율은 상승하였다. 또한 비가역성은 열역학적 변화가 발생한 곳에서 크게 변화하였다. RE245fa2는 선정한 작동유체 중에서 가장 우수한 열역학적 성능을 보여주었으며, 모든 작동유체의 성능은 유사하였다. 열교환기 및 작동유체 선정에 있어 열역학적 성능과 함께 다양한 요소들에 대해서도 엄밀한 이론적 근거가 필요하다.

가스터빈엔진 천이 성능 시험에 의한 정상상태 성능 예측 (Prediction of Gas Turbine Engine Steady Performance from Transient Performance Test)

  • 양인영;전용민;김춘택;남삼식;양수석;이대성
    • 한국항공우주학회지
    • /
    • 제30권5호
    • /
    • pp.62-70
    • /
    • 2002
  • 항공기용 가스터빈엔진에 대한 경제적인 시험 기법 개발을 위해 천이상태 성능 시험 결과로부터 정상상태 성능을 예측할 수 있는 방안을 모색하였다. 천이상태 성능과 정상상태 성능이 상이한 원인을 동역학적 천이 효과, 열적 천이 효과, 공기역학적 천이 효과로 구분하고, 각각을 모델링해서 엔진의 천이상태 성능을 통해 정상상태 성능을 계산하는 보정 인자를 정량화 하였다. 엔진 성능시험은 한국항공우주연구원이 보유한 고공환경시험설비에서 이루어졌다. 먼저 천이상태 성능시험 시 나타나는 엔진 입 출구의 온도 변화가 엔진 성능에 미치는 영향을 보정했으며, 그 후 도입된 보정 인자를 사용해 정상상태 성능을 예측하였다. 이렇게 예측된 결과와 실제 정상상태 성능시험 결과를 비교한 결과, 연료 소모량의 차이 3.68% 이내로 정상상태 성능을 예측할 수 있어, 본 연구에서 사용한 보정 기법이 상당한 정도의 정확도를 보장하고 있는 것으로 나타났다.

둥근 웨이브 핀-관 열교환기의 공기 측 전열 성능 (Airside Performance of Fin-and-Tube Heat Exchangers Having Round Wave Fins)

  • 김내현
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.105-116
    • /
    • 2015
  • 본 연구에서는 절곡 깊이(1.4 mm)와 절곡 핏치(5.5 mm)가 같은 둥근 웨이브와 각진 웨이브 핀-관 열교환기에 대한 실험을 통하여 절곡 형상이 전열성능에 미치는 영향을 검토하였다. j 인자의 경우 둥근 웨이브 핀이 모든 열수에서 1.2~22% 크고 f 인자는 3열의 경우 8.3~23% 크고 1, 2열의 경우는 -1.0~29% 작다. 둥근 웨이브 핀이 우수한 성능을 보이는 이유로 둥근 웨이브 핀의 경우 각진 웨이브 핀 보다 유동이 핀의 곡면을 잘 따라갈 수 있으므로 골에 존재하는 재순환 영역의 크기가 줄어들기 때문으로 판단된다. 둥근 웨이브 핀의 경우 핀 핏치가 j와 f 인자에 미치는 영향은 크지 않다. 또한 j 인자는 튜브 열수가 증가할수록 감소하는 반면 f 인자는 튜브 열수와 무관하다. 실험 데이터로부터 새로운 상관식을 도출하였다.

초고층 아파트의 커튼월 결로 예측 방법에 관한 연구 (A Study on the Prediction Method of Condensation on the Curtain Wall of the High-rise Apartment Unit)

  • 임정희
    • 건설안전기술
    • /
    • 통권41호
    • /
    • pp.88-101
    • /
    • 2007
  • Recently, the condensation of walls often occurring in domestic high-rise apartment buildings is an important problem. The main purpose of this study is to develop the prediction method for the surface condensation on curtain wall in high-rise apartment buildings. Therefore, in this study, we first analyzed exterior climate factors through the analysis of the Seoul climate data and predicted the change of indoor temperature by using Apache program to find the cause of the condensation state and to prevent condensation. Also, according to this result, exterior climate factors and interior factors, which caused the condensation, was examined. The thermal performance of the curtain wall and the range of potential condensation were analyzed to focus on high-rise apartment buildings through computer simulation programs. The results are as $follows;^1$) The frame edge of curtain wall has a higher U-value than in the center by $30%^2$) Because of stack effect, the rooms on the higher floor have a lower external ventilation rate resulting to a higher relative humidity3) Installing a ventilation system($20m^3$/h. person) makes it possible to have a higher external ventilation rate, resulting to a lower relative humidity.

  • PDF