• Title/Summary/Keyword: Thermal performance

Search Result 5,445, Processing Time 0.038 seconds

3D Modeling of Turbid Density Flow Induced into Daecheong Reservoir with ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청댐 유입탁수의 3차원 모델링)

  • Chung, Se-Woong;Lee, Heung-Soo;Ryoo, Jae-Il;Ryu, In-Gu;Oh, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1187-1198
    • /
    • 2008
  • Many reservoirs in Korea and their downstream environments are under increased pressure for water utilization and ecosystem management from longer discharge of turbid flood runoff compared to a natural river system. Turbidity($C_T$) is an indirect measurement of water 'cloudiness' and has been widely used as an important indicator of water quality and environmental "health". However, $C_T$ modeling studies have been rare due to lack of experimental data that are necessary for model validation. The objective of this study is to validate a coupled three-dimensional(3D) hydrodynamic and particle dynamics model (ELCOM-CAEDYM) for the simulation of turbid density flows in stratified Daecheong Reservoir using extensive field data. Three different groups of suspended solids (SS) classified by the particle size were used as model state variables, and their site-specific SS-$C_T$ relationships were used for the conversion between field measurements ($C_T$) and state variables (SS). The simulation results were validated by comparing vertical profiles of temperature and turbidity measured at monitoring stations of Haenam(R3) and Dam(R4) in 2004. The model showed good performance in reproducing the reservoir thermal structure and propagation of stream density flow, and the magnitude and distribution of turbidity in the reservoir were consistent with the field data. The 3D model and turbidity modeling framework suggested in this study can be used as a supportive tool for the best management of turbidity flow in other reservoirs that have similar turbidity problems.

Permeation Flux of Ester Compounds through Hydrophobic Membrane by Pervaporation (투과증발에 의한 Ester 성분의 소수성막의 투과플럭스)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.197-204
    • /
    • 2016
  • The objective of this work was to investigate the performance of pervaporation process for recovery of ester compounds from model aqueous solutions and how the fluxes of esters and water were affected by changes in feed concentration and temperature. The flux of ethyl acetate (EA), propyl acetate (PA), ethyl propionate (EP), butyl acetate (BA), and ethyl butyrate (EB) increased with an increase in feed concentration from 0.15 wt% to 0.60 wt%, and increased with temperature change from $30^{\circ}C$ to $50^{\circ}C$. The flux of esters (EA, PA, EP, BA, and EB) was in order of (EA) < (PA, EP) < (BA, EB). This result meant that the flux strongly depended on affinity between esters and membrane surface; EA is the least hydrophobic because it has one hydrophobic function group ($-CH_2-$), (PA, EP) have two ($-CH_2-$), and (BA, EB) are the most hydrophobic because these have three ($-CH_2-$). As well as such an influence of hydrophobicity of ester molecules on ester flux, the influence of hydrophobicity of membrane surface on ester flux needs further investigation. With increase in temperature, water flux of aqueous EA, PA, EP, BA, and EB solution increased. However, water flux of aqueous ester solutions did not change appreciably with increase in concentration. This experimental results may be used as fundamental data for pervaporation (PV) to improve the aroma recovery process as an alternative to thermal evaporation and distillation processes.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Preparation and characterization of poly(dimethylsiloxane) foam prepared by hydrogen condensation reaction (수소 축합 반응에 의한 폴리디메틸실록산 미세 발포체의 제조 및 물성분석 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.802-812
    • /
    • 2016
  • Silicone foam is very useful as flame resistant material for many industrial areas such as high performance gasketing, thermal shielding, vibration mounts, and press pads. A silicone foam was prepared through simultaneous crosslinking and foaming by hydrogen condensation reaction of a vinyl-containing polysiloxane (V-silicone) and a hydroxyl-containing polysiloxane (OH-silicone) with hydride containing polysiloxane (H-silicone) in the presence of platinum catalyst and imorganic filler at room temperature. This is more convenient process for silicone foam manufacturing than the conventional separated crosslinking and foaming systems. Funtionalized silicones we used in this experiment were consisted with a V-silicone containing 1,0 meq/g of vinyl groups and a viscosity of 20 Pa-s, an OH-silicone with 0.4 meq/g of hydroxyl groups and a viscosity from 50 Pa-s, and an H-silicone containing 7.5 meq/g of hydride groups and a viscosity of 0.06 Pa.s. The effects of compositions of functionalized silicones and additives, such as catalyst and filler on the structure and mechanical properties of silicone foam were studied. 0.5 wt% of Pt catalyst was enough to accelerate the foaming rate of silicone resins. The addition of OH-silicone with lower viscosity accelerates the initial foaming rate and decreases the foam density, but the addition of V-silicone with lower viscosity reduces the tensile strength as well as the elongation. The final foam density, tensile strength, and elogation of silicone foam prepared under the SF-3 condition increase maximum to $0.58g/cm^3$, $3,51kg_f/cm^2$, and 176 %, repectively. We found out the filler alumina also played an important role to improve the mechanical properties of silicone foams in our foaming system.

Manufacturing and Structural Analysis of Thick Composite Spar Using AFP Machine (AFP로 제작된 두꺼운 복합재료 스파의 제작 및 구조 해석)

  • Kim, Ji-Hyeon;Han, Jun-Su;Bae, Byung-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.212-218
    • /
    • 2015
  • A large composite spar was manufactured using an automatic fiber placement (AFP) machine. To verify its structural performance, the weakest part of the structure, which is called 'corner radius', was tested under bending and examined by finite element analysis. Since the application of AFP machine to composite structure fabrication is still in early stage in Korea, this paper presents the summary of whole process for manufacturing composite spar using AFP machine from mandrel design and analysis to verification test. The deflection and stress by mandrel weight and AFP machine force, thermal deformation and natural frequency were all examined for mandrel design. The target structure was composite C-spar and cured in an autoclave. Test results were compared with nonlinear finite element analysis results to show that the structure has the strength close to the theoretical value. It was confirmed that the corner radius of the spar manufactured by AFP process showed deviation less than 20% compared with first ply failure strength. The results indicate that the AFP technology could be used for large scale composite structure production in the near future.

Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers (발포제 함량에 따른 경량 다공성 지오폴리머의 밀도와 강도 특성)

  • Lee, Sujeong;An, Eung-Mo;Cho, Young-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Lightweight geopolymers are more readily produced and give higher fire resistant performance than foam cement concrete. Lowering the density of solid geopolymers can be achieved by inducing chemical reactions that entrain gases to foam the geopolymer structure. This paper reports on the effects of adding different concentrations of aluminum powder on the properties of cellular structured geopolymers. The apparent density of lightweight geopolymers has a range from 0.7 to $1.2g/m^3$ with 0.025, 0.05 and 0.10 wt% of a foaming agent concentration, which corresponds to about 37~60 % of the apparent density, $1.96g/cm^3$, of solid geopolymers. The compressive strength of cellular structured geopolymers decreased to 6~18 % of the compressive strength, 45 MPa of solid geopolymers. The microstructure of geopolymers gel was equivalent for both solid and cellular structured geopolymers. The workability of geopolymers with polyprophylene fibers needs to be improved as in fiber-reinforced cement concrete. The lightweight geopolymers could be used as indoor wall tile or board due to fire resistance and incombustibility of geopolymers.

Preliminary study on absorption characteristic of a human body according to the amount of clothing worn for developing standard test dummy (표준더미 개발을 위한 착의량에 따른 인체의 흡음특성 기초연구)

  • Kim, Yong-Hee;Lee, Sung-Chan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.254-260
    • /
    • 2017
  • The purpose of this study is to evaluate the sound absorption characteristics of a human body according to the amount of clothing worn by using reverberation method measurement method for developing standard test dummy, which can be used for testing absorption of occupied audience chair. Test method was based on the previous study (Conti et al., 2004), each experiment is conducted in the reverberation room and a subject wearing clothes is standing in that chamber. In this experiment, the sound absorption area of each frequency band according to the wearing of various material clothing was measured. As a result of measurements, the average sound absorption area of the whole frequency band was $0.25m^2-0.48m^2$ in case of a subject not wearing outer clothes, and $0.38m^2-0.98m^2$ in case of wearing of outerwear. Polyester tops by showing the maximum value, the highest characteristics in the 800 Hz to 1 kHz band among the rest of fiber materials. The outer jacket made of the wool and cotton materials show a higher absorption area as the frequency increases to the higher frequency band. The change of the sound absorption area according to the clothing amount was divided by the thermal resistance (clo) of the worn clothes and the weight per body surface area.

Enhanced Flame Retardancy of Cotton Fabric by Functionalized Graphene Oxide and Ammonium Polyphosphate (기능성화 산화 그래핀과 폴리인산암모늄을 이용한 직물 난연성 향상)

  • Ka, Dongwon;Jang, Seongon;Jung, Hyunsook;Jin, Youngho
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.177-184
    • /
    • 2020
  • Flame retardant(FR) clothes prohibit additional fire diffusion and make the personnel do their tasks without a hitch in a flammable environment. The existing FR clothes, however, are heavy and give high thermal fatigue. Therefore, it is strongly demanded to develop a light, convenient, and eco-friendly clothes. Recently, many works have been reported to make FR fabrics with phosphorus compounds, but their performance could not satisfy the specified criteria in appraisal standards of domestic and American FR clothes or combat uniforms. In this paper, two kinds of phosphorus compounds were applied to cotton fabric. Graphene oxide functionalized with a phosphorus-rich deep eutectic solvent and ammonium polyphosphate were coated on cotton fabric by eco-friendly padding procedure. The coated fabrics were analyzed with thermogravimetric analysis, vertical flame resistance test(ASTM D6413), cone calorimeter test(ISO 5660-1), and method of test for limited flame spread(ISO 15025). It was revealed that the as-made cotton with those two materials simultaneously had better flame resistance than the cottons with each one. Furthermore, an additional coating for hydrophobicity on the FR cotton was tried for better washing fastness.

Numerical analysis for heat transfer and pressure drop characteristics of (다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석)

  • Hou, Rong-Rong;Park, Hyeong-Seon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • In numbers of kinds of heat exchanger, the shell-tube heat exchanger is the most commonly used type of heat exchanger in the industry field. In order to improve the thermal performance of the heat exchanger, this study was analyzed heat transfer characteristics according to arrangement of baffle and direction of baffle and bump phase of baffle about shell-tube heat exchanger using appropriate SST (Shear Stress Transport) turbulence model for flow separation and boundary layer analysis. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of shell side was constantly 344 K and the variation of the water flow rate was 6, 12, 18 and 24 l/min. As the result of analysis, zigzag baffle arrangement enhances heat transfer rate and pressure drop. Furthermore, in the direction of the baffle, heat transfer rate is more improved with vertical type and angle $45^{\circ}$ type than existing type, and pressure drop was little difference. Also, the bump shape of baffle surface contributes to heat transfer rate and pressure drop improvement due to the increased heat transfer area. Through analysis results, we knew that the increase of the heat transfer was influenced by flow separation, fluid residual time, contact area with the tube, flow rate, swirl and so on.

Loss and Heat Transfer Analysis for Reliability in High Speed and Low Torque Surface Mounted PM Synchronous Motors (고속·저토크용 표면부착형 영구자석 동기 전동기의 운전 안정성 확보를 위한 손실 및 열전달 특성 분석)

  • Choi, Moon Suk;Um, Sukkee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • It is essential to predict the coil temperature under over load and over speed conditions for reliability in high speed low torque surface mounted PM synchronous motors(SPM). In the present study, the losses and coil temperature are measured under rated condition and calculated under over speed and over load conditions in the three different motors with 35PN440, 25PN250 and 15HTH1000. The heat transfer modeling has been performed based on acquired losses and temperature. The difference of coil temperature between heat transfer modeling and experiment is less than 6.4% under no load, over speed and over load conditions. Subsequently, the coil temperature of the motor with 15HTH1000 is 84.4% of the coil temperature of the motor with 35PN440 when speed is 0.9 and load is 3.0. The output of motor with 15HTH1000 is 85.2% greater than the output of the motor with 35PN440 when the dimensionless coil temperature is 1.0.