• Title/Summary/Keyword: Thermal monitoring

Search Result 572, Processing Time 0.026 seconds

MRI-Induced Full Thickness Burn on the Ear Lobule due to Pulse Oximetry: A Case Report (증례보고: MRI 검사시 귓불에 부착한 산소측정기로 인해 발생한 전층 화상)

  • Kim, BumSik;Lim, SooA;Yoon, JungSoo;Eo, SuRak;Han, Yea Sik
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.43-45
    • /
    • 2021
  • Magnetic Resonance Image (MRI) has been used as a safe, conventional and harmless diagnostic tool. However, thermal injuries have frequently been reported during MRI scanning due to the heat generated by the reaction with the magnetic field. It is recommended that metal-containing monitoring devices such as pulse oximetry and ECG monitoring leads should be removed prior to the start of the MRI scan, but these monitoring devices are inevitably placed in children or patients in the intensive care unit who have low compliance with the scan. Since the interaction between the metal probe or wire loop of pulse oximetry and the magnetic field can result in high thermal conduction, full-thickness burn can occur over the entire body surface during the MRI examination. Several cases of thermal burns from pulse oximetry on the fingers have been reported. However, we present a case of a full-thickness burn arising left earlobe in a 2-month-old child caused by the high conduction heat from pulse oximetry metal probe.

Assessment of Thermal Stress in Temporary Bridge (가교량의 온도응력 평가)

  • Park, Young Hoon;Lee, Seung Yong;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.1-10
    • /
    • 1998
  • The temporary steel bridges which are constructed for detour and constructional expediency are consisted of H-beams(as superstructure) and H-piles(as substructure). Because these members are fastened by high-tension bolts, there are no expansion joints in these bridges. So, these kinds of bridges have no system which can relieve the excessive thermal stress. In this investigation, monitoring system was set up at temporary steel bridge and stress and temperature changes of H-beam are monitored. From these measured data, it is analyzed that the relationship between ambient and main-girder temperature change, between temperature and stress change. With these analyses, it is resulted that the thermal stress take main part of stress variation in this bridge and the restrain of thermal longitudinal displacement of H-pile. In addition, because the connection part of H-beam to H-beam is weak in the continuous spans, the sub-modelling is well apt to reflect the effect of thermal stress.

  • PDF

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

A Field Survey of Thermal Comfort in Office Building with Thermal Environment Standard (온열환경기준에 따른 여름철 사무실의 열쾌적성 평가)

  • Kong, Hyo-Joo;Yun, Geun-Young;Kim, Jeong-Tai
    • KIEAE Journal
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2011
  • This study aims to analyze the field survey of thermal comfort in office building with national thermal environment standard. Internal and external temperatures were measured at ten minute intervals and compared in accordance with the national standard for thermal environment. Sixty two workers filled in the questionnaire survey forms five times a day for 40 days. Field monitoring of offices in Seoul, Korea were conducted from 20 July to 28 August. Result for the comfort temperature was set a $26.30^{\circ}C$. This indicates that the 26 degree is reliable for the Korean standard. Indoor temperature standard can reduce energy use by air-conditioned buildings and the temperature would be offer comfort to occupants.

Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock (가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성)

  • Song, Jun-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.247-252
    • /
    • 2006
  • Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.

A Study on multi-channel temperature monitoring for the detection of leakage or seepage in dam body (댐 침투수 탐지를 위한 멀티 채널 온도 모니터링 연구)

  • Oh, Seok-Hoon;Kim, Jung-Yul;Park, Han-Gyu;Kim, Hyoung-Soo;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1211-1218
    • /
    • 2005
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

Monitoring of Internal Harmful Factors According to Environmental Factors in Pig Farm (양돈장 내의 환경 요인에 따른 내부 유해인자의 변동 모니터링)

  • Lee, Seong-Won;Kim, Hyo-Cher;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.105-115
    • /
    • 2020
  • With the decrease of the agricultural population in Korea, the workers who is vulnerable to labor are increasing in agricultural industry because of aging, feminization of population. They are exposed in poor working environment with higher temperature and concentrations of dust, gas. Higher concentration of harmful gas and dust can cause chronic and acute disease to workers depending on exposure intensity and frequency. In order to improve the working environment in the livestock facilities, It is important to secure monitoring data of the thermal environment and the concentration of harmful gases and fine dust. Multi-point measurement was performed to analyze the regional environmental conditions in the pig rooms. When analyzing the working environment, video monitoring was conducted to analyze the concentration changes of ammonia, hydrogen sulfide and fine dust according to worker movement and work type. Ammonia and hydrogen sulfide monitoring result showed 1.5~2 times higher concentrations than other work when working in the pigs living zone, and 2~4 times higher than other work when working to increase the activity of pigs. In the case of fine dust, the result was 1.3 times higher than the worker's exposure standard in a specific work. The concentrations of gases and dusts from pig farms are not of concern for acute poisoning in normal work, but there is a risk of chronic respiratory disease if they are continuously exposed. Accordingly, there is a need for development of work environment monitoring device tailored to workers and preparation of alternatives.

Inspection of Calandria Reactor Surface of Wolsung Nuclear Power Plant using Thermal Infrared Camera mounted on the Mobile Robot KAEROT/m2

  • Cho, Jai-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.578-578
    • /
    • 2002
  • Thermal infrared imaging is a highly promising technology for condition monitoring and predictive maintenance of electronic, electrical and mechanical elements in nuclear power plants. However, conventional low-cost infrared imaging systems suffer from poor spatial resolution compared to commercial CCD cameras. This paper describes an approach to enhance inspection performances for calandria reactor area of Wolsung nuclear power plant through the technique of superimposing thermal infrared image into real CCD image. In the occurrence of thermal abnormalities on observation points and areas of calandria reactor area, unusual hot image taken from thermal infrared camera is mapped upon real CCD image. The performance of the technique has been evaluated in the experiment carried out at Wolsung nuclear power plant in the overhaul period. The results show that localizations of thermal abnormalities on calandria reactor face can be estimated accurately.

  • PDF

A Study on the Distribution Characteristics of Sulfur Compounds in Ambient air using Continuous Monitoring Method in Incheon Area

  • Seo, Seok-Jun;Lim, Yong-Jae;Hong, You-deok;Park, Geon-Young
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.128-134
    • /
    • 2015
  • This paper focuses on the applicability of a continuous monitoring method on trace sulfur compounds in the ambient air by TD and GC/PFPD. The target compounds for monitoring include H2S(hydrogen sulfide), Methyl mercaptan, Dimethyl Sulfide, and Dimethyl disulfide. The result of QA/QC on monitoring instruments satisfies all the standards of Odor Measurement and Analysis Method, showing that the reproductivity of the compounds by concentration is within 10%, linearity is above 0.98 of a correlation efficient, method detection limit is 0.16 ppb by MM standard, and recovery rate is over 70%. Monitoring was conducted for two years from March 2006 to February 2008. As a result of the monitoring, the average concentration of H2S was 0.08 ppb, with the maximum concentration at 16.15 ppb. The result indicates that it is reasonable to do continuous monitoring as there appears a spontaneous event of high concentration by the condition of the site during monitoring odor-causing substances. Therefore, it is suggested that the continuous monitoring method used in this paper is appropriate to identify the characteristics of sudden occurrence and concentration variations of sulfur compounds.

On-Line Condition Monitoring and Diagnostics of Distribution Equipment (배전반 설비의 온라인 모니터링 및 진단)

  • Yun, Ju-Ho;Im, Wan-Su;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.525-526
    • /
    • 2007
  • Continuous on-line temperature monitoring provides the means to evaluate current condition of equipment and detect abnormality. It allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF