• Title/Summary/Keyword: Thermal monitoring

Search Result 570, Processing Time 0.028 seconds

The information system concept for thermal monitoring of a spent nuclear fuel storage container

  • Svitlana Alyokhina
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3898-3906
    • /
    • 2023
  • The paper notes that the most common way of handling spent nuclear fuel (SNF) of power reactors is its temporary long-term dry storage. At the same time, the operation of the dry spent fuel storage facilities almost never use the modern capabilities of information systems in safety control and collecting information for the next studies under implementation of aging management programs. The author proposes a structure of an information system that can be implemented in a dry spent fuel storage facility with ventilated storage containers. To control the thermal component of spent fuel storage safety, a database structure has been developed, which contains 5 tables. An algorithm for monitoring the thermal state of spent fuel was created for the proposed information system, which is based on the comparison of measured and forecast values of the safety criterion, in which the level of heating the ventilation air temperature was chosen. Predictive values of the safety criterion are obtained on the basis of previously published studies. The proposed algorithm is an implementation of the information function of the system. The proposed information system can be used for effective thermal monitoring and collecting information for the next studies under the implementation of aging management programs for spent fuel storage equipment, permanent control of spent fuel storage safety, staff training, etc.

Nondestructive Interfacial Evaluation and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소 섬유 강화 에폭시아크릴레이트 복합재료의 자외선과 열경화에 따른 경화 모니터링 및 비파괴적 계면 평가)

  • 박종만;공진우;김대식;이재락
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2003
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermo setting composite with different curing processes were investigated using electro-micromechanical test. After curing, the residual stress was monitored by measurement of electrical resistance and then compared to various curing processes. In thermal curing case, matrix tensile strength, modulus and interfacial shear strength were higher than those of ultraviolet curing case. The shrinkage measured during thermal curing occurred significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient. The apparent modulus measured in the thermal curing indicated that mechanical and interfacial properties were highly improved. The reaching time to the same stress of thermal curing was faster than that of UV curing case.

A Study on Geothermal Characteristics of Dam Body and Seepage Flow (댐 제체 및 침투수 흐름의 지열학적 고찰)

  • Park, Dong-Soon;Jung, Woo-Sung;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.75-85
    • /
    • 2006
  • In recent geotechnical engineering, geothermal approach has been on the horizon to deal with geoenvironmental issues, freezing and thawing problems, and seepage phenomenon in dams and embankments. In this study, geothermal characteristic through inner body of dams and its influence on the seepage flow were experimented by lab test and field instrumentation. Also, one of up-to-date temperature monitoring technique, called as multi-channel thermal line sensing, was evaluated its availability. As a result of lab test, it is found that the seepage flow has influence on the geothermal characteristic and a potential of finding phreatic line and seepage fluctuation could be possible by continuous temperature monitoring using thermal line sensing skills. These kine of geothermal information could be available to the modelling of water geo-structure interaction. Out of short-term field tests, clear water table and temperature distribution of a dam were easily found through temperature monitoring in holes located near a reservoir and holes within a depth of constant temperature layer. However, it is also found that the geothermal flow and finding seepage line could not be easily understandable through multi-channel temperature monitoring because of the existence of constant temperature field, thermal conductivity of soils and rocks, and unsaturated characteristics of geo-material. In this case, long-term geothermal monitoring is recommended to find sudden fluctuation of seepage line and amount of leakage.

  • PDF

The Monitoring System for Location of Workers Inside a Thermal Power Plant Boiler (화력 발전기 보일러 내부 작업자 위치 모니터링 시스템 개발)

  • Song K.;Yun, C.N.;Shin, Y.H.;Shin, J.H.;Han, S.H.;Jang, D.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.71-78
    • /
    • 2021
  • There are regularly planned overhaul periods in thermal power plants, which involve the maintenance of the boiler of the power plants. However, thermal power plants workers are always exposed to risk during overhaul periods owing to the narrow space and significant dust inside the boiler. Therefore, it is essential to develop a safety monitoring system that is suitable for operating in this type of environment. In this study, we developed not only a worker three-dimensional (3D)-location monitoring system that can monitor and record the entry/exit of workers, their 3D-location, and fall accidents but also a method to secure the working environment and operation efficiency. This system comprises of a worker tag, which was equipped with an inertial measurement unit, a barometric pressure sensor, and a Bluetooth low energy (BLE), and the tags were given to each worker. In addition, the location of workers inside the boiler was measured using a pedestrian dead reckoning (PDR) method and BLE beacons. The location data of the workers tag were transmitted to the integrated database (DB) server through a gateway, and to the administrator monitoring system. The performance of the system was demonstrated inside an actual thermal power plant boiler, and the accuracy and reliability of the system were verified through a number of repeated tests. These results provide insights on designing a new system for monitoring enclosed spaces.

Recent Developments Involving the Application of Infrared Thermal Imaging in Agriculture

  • Lee, Jun-Soo;Hong, Gwang-Wook;Shin, Kyeongho;Jung, Dongsoo;Kim, Joo-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.280-293
    • /
    • 2018
  • The conversion of an invisible thermal radiation pattern of an object into a visible image using infrared (IR) thermal technology is very useful to understand phenomena what we are interested in. Although IR thermal images were originally developed for military and space applications, they are currently employed to determine thermal properties and heat features in various applications, such as the non-destructive evaluation of industrial equipment, power plants, electricity, military or drive-assisted night vision, and medical applications to monitor heat generation or loss. Recently, IR imaging-based monitoring systems have been considered for application in agricultural, including crop care, plant-disease detection, bruise detection of fruits, and the evaluation of fruit maturity. This paper reviews recent progress in the development of IR thermal imaging techniques and suggests possible applications of thermal imaging techniques in agriculture.

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.335-347
    • /
    • 2016
  • One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

The Flame Image Observation for Monitoring Management of Pulverized Coals Firings and its Feasibility Test to Boilers for Thermal Power Plant (미분탄 연소의 감시 관리를 위한 화염영상 감시 및 발전용 보일러 적용시험)

  • Baek, Woon-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2008
  • The flame image observation and analysis has been investigated for combustion monitoring and management of the pulverized coal firing for thermal power plant, especially for lower nitrogen oxide generation and safer operation. We aimed at obtaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the conditions of combustion on the individual homers. Its feasibility test was undertaken with Samchonpo thermal power plant #4 unit which has 24 burners, through which the system was observed to be effective for evaluating the combustion conditions and continuous monitoring to prevent future loss of ignition.

An Improved Method for Monitoring of Soil Moisture Using NOAA-AVHRR Data

  • Fu, June;Pang, Zhiguo;Xiao, Qianguang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.195-197
    • /
    • 2003
  • Soil moisture is a crucial variable in research works of hydrology, meteorology and plant sciences. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural practices. There are already several remote sensing methods used for monitoring soil moisture, such as thermal inertia, vegetation water-supplying index, crop water stress index and multi-factor regression. In this paper, an improved method has been discussed which is based on the thermal inertia. We analyzed the problems of monitoring soil moisture using satellites at first, and then put forward an simplified method which directly uses land surface temperature differences to measure soil moisture. Also we have taken the influence of vegetation into account, and import NDVI into the model. The method was used in the study of soil moisture in Heilongjiang Province, China, and we draw the conclusion by the experiments that the model can evidently increase the precision of monitoring soil moisture.

  • PDF

Showerhead Surface Temperature Monitoring Method of PE-CVD Equipment (PE-CVD 장비의 샤워헤드 표면 온도 모니터링 방법)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.16-21
    • /
    • 2020
  • How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.

Implementation of Performance Monitoring System for Thermal Power Plant in SIEMENS DCS (SIEMENS DCS 환경에서 화력발전소 성능감시 시스템 구현)

  • 김승민;문태선;조창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.37-37
    • /
    • 2000
  • This paper introduces the Performance Monitoring System(PMS) in a thermal power plant. The purpose of the PMS is to offer the operator current performance information of plant which could be an index of plant status or information to improve plant efficiency. The PMS of Bukcheju thermal power plant unit #2&3 is implemented under the SIEMENS DCS which supplies about 150 function blocks for performance calculation and all measured signals. The performance of unit, boiler, turbines, feedwater heaters, condenser, airpreheaters, feedwater pumps will be monitored and updated for every 5 minutes in PMS of Bukcheju TPP.

  • PDF