• Title/Summary/Keyword: Thermal loading

Search Result 785, Processing Time 0.037 seconds

Synthesis and Characterization of Methyltriethoxysilyl-Mediated Mesoporous Silicalites

  • Rabbani, Mohammad Mahbub;Oh, Weon-Tae;Nam, Dae-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.119-122
    • /
    • 2011
  • A series of mesoporous silicalites was synthesized using different compositions of tetraethylorthosilicate and methyltriethoxysilane (MTES) as the silica source. Cetyltrimethylammonium bromide was used as the organic template. Their detailed pore structures were investigated by transmission electron microscopy, X-ray diffraction, and N2 adsorption method. The thermal properties of these silicalites were studied by thermogravimetric analysis. The increased amount of MTES destroyed mesoporous channels and reduced pore sizes from 3.4 nm to 2.8 nm in calcined silicalites. The calcined silicalite transformed completely into an amorphous state at 30% MTES loading. Methyl pending groups of MTES hindered the structural ordering of ≡Si-O- frameworks, resulting in an amorphous structure. This was caused by the insufficient formation of supramolecular assembly with the organic template. No capillary condensation step was found in MS 7/3 silicalite. The other capillary condensation steps shifted toward the lower relative pressure with increasing MTES content, indicating the reduction of pore sizes.

Detection of Real Defects in Composite Structures by Laser Measuring System (레이저 계측시스템에 의한 복합재료 구조물의 실제결함 검출)

  • 정성균;김태형;김경석;강영준
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.19-26
    • /
    • 2002
  • Real defects in composite structures were detected by using laser measuring system. Four types of real defects, that is, impact-induced delamination in a composite laminate, debond in a honeycomb structure, free-edge delamination in a composite laminate and debond in an adhesive joint, were made by applying several types of loads to the specimens. Laser measuring system such as ESPI and shearography technique were used to detect those defects. Thermal loading method, which can easily induce the surface deformation of specimen, was used to detect the defects. Experimental results show that the defects in composite structures could be easily detected by ESPI and shearography technique. Moreover, it shows that ESPI and shearography technique could be usefully applied to the detection of defects in various kinds of composite structures.

Finite Element Analysis of Membrane for LNG Storage Tank (액화천연가스 저장탱크용 멤브레인의 유한요소해석)

  • 김영규;윤인수;홍성호;전인기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2797-2804
    • /
    • 1994
  • This paper analyzes the behaviors of corrugated membrane under the cryogenic liquid pressure and thermal loading using the FEM analysis program MARC. The FEM calculations were carried out on the basis of measured data of Technigaz membrane. It is very important to know the concentration levels and distributions of stress in the corrugated membrane. A quarter of the membrane sheet in place of the whole membrane was simulated because of its geometric symmetricity. The calculated results of the concentrated stress showed that the maximum stress occurs at the knot parts and at the root corner radius of the corrugations. The FEM calculated results indicated that the ring knot membrane which was developed in this study showed uniformly distributed stress and the lowest stress levels in the cross knot area in comparison with other two membranes. These results are very important to optimize the shape and improve the safety of membrane structure.

Effects of Clearance on the Formation of Adiabatic Shear Band in Stepped Specimen (계단시편의 간극이 단열전단밴드의 형성에 미치는 영향)

  • Yoo, Y.H.;Jeon, G.Y.;Chung, D.T.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1700-1709
    • /
    • 1993
  • The stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element method. Three different clearance sizes are tested. The material model for the stepped specimen includes effects of strain hardening, strain rate hardening and thermal softening. It is found that the material inside the fully grown adiabatic shear band experiences three phase of deformation, (1) homogeneous deformation phase, (2) initiation/incubation phase, and (3) fast growth phase. The second phase of deformation is initiated after sudden shear stress drop which occurs at the same time regardless of the clearance size. The incubation time prior to fast growth phase increases, as the clearance size of the stepped specimen increases. Whereas, after incubation period, the growth rate of the adiabatic shear band decreases, as the clearance size decreases. It is also found that two adiabatic shear band may develop instead of one for the smaller clearance size.

A Study on the Vibration Behavior of Composite Laminate under Tensile Loading by ESPI (ESPI에 의한 인장하중 하에서의 복합재 적층판의 진동 거동에 관한 연구)

  • Yang, Seung-Pil;Kim, Koung-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Chong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.516-521
    • /
    • 2000
  • Most of studies, using ESPI method, have handled tension, thermal and vibration analysis, and is limited to isotropic materials. However, tension and vibration simultaneously are loaded in real structure. Also, almost study using ESPI method is locally limited to the analysis on the isotropic materials and a few studies on the anisotropic materials have reported. Existing methods, such as the accelerometer method and FEA method, to analyze vibration have some disadvantages. Using the accelerometer method that is generally used to analyze vibration phenomena, it is impossible to analyze vibration on the oscillating body and one can observe no vibration mode shape during experiment. In case of the FEA method, it is difficult to define boundary conditions correctly if the shape of a body tested is complex, and one can just obtain vibration mode shapes on the peak amplitude in each modes. In this study, plane plate of stainless steel(STS304), isotropic material, that is used as structural steel is analyzed about vibration characteristics under tension. Also, in the study of stainless steel, the characteristics of composite material(AS4/PEEK) used as high strength structural material in aircraft is evaluated about vibration under tension, and studies the effect of tension on vibration.

  • PDF

Study on Assembly of TF Coil Structure in KSTAR Tokamak (KSTAR 토카막 장치에서 TF 자석 구조물의 조립에 관한 검토)

  • Kim, K.M.;Choi, C.H.;Hong, K.H.;Yang, H.L.;Yu, I.K.;Her, N.I.;Sa, J.W.;Kim, H.K.;Kim, G.H.;Kim, S.T.;Kim, H.T.;Yang, J.S.;Bak, J.S.;Kim, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1262-1267
    • /
    • 2003
  • TF magnet structures are the main structural components in the KSTAR magnet systems to protect the superconducting coils from mechanical, electrical, and thermal loads. TF coil structure supports CS and PF coil system. The inter-coil structure contains adjustable shear keys and conical bolts to provide pre-loading in toroidal direction and to resist against in-plane and out-of-plane forces that are the most critical loads on the TF magnet system. The conical bolts and shear keys are specially designed to assemble easily and to provide a convenient accommodation for a good alignment. The connection plate that is one of the prototype fabrications had been manufactured to study adjustability of conical bolts and shear keys for assembly of TF coil structure. We could measure the misalignments at the keyways and conical holes with the misalignment measuring instrument.

  • PDF

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan;Ha, Jang-Hoon;Hahn, Yoo-Dong;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2012
  • $Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.

Synthesis of solar light responsive ZnO/TaON photocatalysts and their photocatalytic activity (태양광 응답형 ZnO/TaON 나노 복합체의 제조 및 광촉매 특성 평가)

  • Kim, Tae-Ho;Jo, Yong-Hyeon;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.256-257
    • /
    • 2014
  • The effects of the preparation conditions of ZnO-modified TaON on the photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light were investigated. The ZnO/TaON nanocomposite were prepared by loading particulate $Ta_2O_5$ with ZnO using different ZnO contents, followed by thermal nitridation at 1123 K for 5 h under $NH_3$ flow (20 ml min.1). The asprepared samples were characterized by XRD, UV-Vis-DRS, and SEM-EDX. The results revealed that the band gap energy absorption edge of as prepared nanocomposite samples was shifted to a longer wavelength as compared to ZnO and $Ta_2O_5$, and the 60 wt% ZnO/TaON nanocomposite exhibited the highest percentage (99.2 %) of degradation of Rh. B and the highest reaction rate constant ($0.0137min^{-1}$) in 4 h which could be attributed to the enhanced absorption of the ZnO/TaON nanocomposite photocatalyst. Hence, these results suggest that the ZnO/TaON nanocomposite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial ZnO, $Ta_2O_5$, and TaON.

  • PDF

Development of machinery parts test device for the rising high temperature and measuring large and tiny scale torque (기계류부품의 고온상승, 고 토크와 미소토크의 시험장치 개발)

  • Lee, Yong Bum;Park, Hong Won;Lee, Geun Ho
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • For a reliability assessment of machinery parts, accurate performance test, environmental test, life test, etc. are required on the sample. In the performance test conditions of various machinery parts, some problems happen such as needs to rise temperature rapidly with large flow of oil having very low thermal conductivity and to measure very high torque or tiny torque, etc. This study brings out the method to apply heat to rise temperature for large flow of oil without chemical change in a performance test of oil cooler. To measure large scale of torque in a performance test of planetary gearbox of excavator, the method of torque measurement is proposed by replacing the large torque meter priced very expensive. To measure very small torque on lubricated friction, a methode of force balance type test mechanism is introduced for tests of piston assembly.

COMPARISON OF NEUTRONIC BEHAVIOR OF UO2, (TH-233U)O2 AND (TH-235U)O2 FUELS IN A TYPICAL HEAVY WATER REACTOR

  • MIRVAKILI, SEYED MOHAMMAD;KAVAFSHARY, MASOOMEH ALIZADEH;VAZIRI, ATIYEH JOZE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.315-322
    • /
    • 2015
  • The research carried out on thorium-based fuels indicates that these fuels can be considered as economic alternatives with improved physical properties and proliferation resistance issues. In the current study, neutronic assessment of $UO_2$ in comparison with two $(Th-^{233}U)O_2$, and $(Th-^{235}U)O_2$ thorium-based fuel loads in a heavy water research reactor has been proposed. The obtained computational data showed both thorium-based fuels caused less negative temperature reactivity coefficients for the modeled research reactor in comparison with $UO_2$ fuel loading. By contrast, $^{235}U$-containing thorium-based fuel and $^{235}U$-containing thorium-based fuel loadings in the thermal core did not drastically reduce the effective delayed neutron fractions and delayed neutron fractions compared to $UO_2$ fuel. A provided higher conversion factor and lower transuranic production in the research core fed by the thorium-based fuels make the fuel favorable in achieving higher cycle length and less dangerous and costly nuclear disposals.