• Title/Summary/Keyword: Thermal imaging system

Search Result 236, Processing Time 0.031 seconds

Thermal Imaging Camera Development for Automobiles using Detail Enhancement Technique (디테일 향상 기법을 적용한 자동차용 열상카메라 개발)

  • Cho, Deog-Sang;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.687-692
    • /
    • 2018
  • In this paper, the development of an automotive thermal imaging camera providing image information for ADAS (Advanced Driver Assist System) and autonomous vehicles is described and an improved technique to enhance the details of the image is proposed. Thermal imaging cameras are used in various fields, such as the medical, industrial and military fields, for the purpose of temperature measurement and night vision. In automobiles, they are utilized for night vision systems. For their utilization in ADAS and autonomous vehicles, appropriate image resolution and enhanced detail are required for object recognition. In this study, a $640{\times}480$ resolution thermal imaging camera that can be applied to automobiles is developed and the BDE (Block-Range Detail Enhancement) technique is applied to improve the details of the image. In order to improve the image detail obtained in various driving environments, the block-range values between the target pixel and the surrounding 8 pixels are calculated and classified into 5 levels. Then, different factors are added or subtracted to obtain images with high utilization. The improved technique distinguishes the dark part of the image by the resulting temperature difference of 130mK and shows an improvement in the fine detail in both the bright and dark parts of the image. The developed thermal imaging camera using the improved detail enhancement technique is applied to a test vehicle and the results are presented.

Performance Comparison of Thermal Imagers with Uncooled and Cooled Detectors For Fire Fighting Application (비냉각형 적외선 센서를 이용한 열상시스템과 냉각형 적외선 센서를 이용한 열상시스템의 화재 진압 시 성능 비교)

  • Kim, Byung-Hyuk;Jung, Han;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • Thermal Imaging systems are reported to be crucial for fire fighting and beginning to be used by fire fighters. The performance of thermal imaging system is determined by both the radiation of infrared from the target and the attenuation of infrared signal in the optical path by the absorption, scattering, diffraction and reflection. In the scene of fire, water drops with various sizes such as vaporized water, wafer mist from sprinkler, and wafer to suppress the fire reside with various gas generated by burning. To measure the transmission of infrared radiation in the scene of fire, fire simulating system and thermal imagers with cooled detector which detects $3{\sim}5{\mu}m$ infrared and uncooled detector fabricated by the MEMS technology which detects $8{\sim}12{\mu}m$ infrared. are made. With thermal imagers and Ire simulating system, the change of thermal image with respect to the change of visibility controlled with the burned fas was measured. It was found that the transmission of infrared was not reduced by the burned gas, which could be explained by the long wavelength of infrared ray compared with visible ray. However, the transmission of infrared ray was largely reduced by the combination of burned gas and water mist supplied by sprinkler. This is contrary to the results of calculated transmission through the pure water mist and shows that the transmission of infrared ray is mostly affected by the compounds of water mist and burned gas. In this case, it was found that the uncooled detector which detects $8{\sim}12{\mu}m$ infrared ray is better than cooled detector which detects $3{\sim}5{\mu}m$ infrared ray for fire fighting.

Study on the Correlation between Digital Infrared Thermal Imaging-induced Severity of Cold Hypersensitivity of Hands and Feet and Heart Rate Variability (Digital Infrared Thermal Imaging에 따른 수족냉증 중증도와 Heart Rate Variability의 상관관계 연구)

  • Woo, Hye-Lin;Pak, Yeon-Kyeong;Kim, Joon-Ho;Park, Kyoung-Sun;Hwang, Deok-Sang;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Chang-Hoon
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives: Cold Hypersensitivity of Hands and Feet (CHHF) has been diagnosed objectively by Digital Infrared Thermal Imaging (DITI) and has been known to be associated with autonomic nervous system (ANS), which can be assessed by Heart Rate Variability (HRV). This study evaluated the correlation between severity of CHHF and HRV variables.Methods: We studied 155 non-menopausal women with CHHF who visited Kyung Hee University Hospital at Gangdong from 01 October 2013 to 30 April 2016. We measured DITI and HRV of each patient. We used DITI to calculate the severity of CHHF with thermal difference between upper arm (L4, 俠白穴) and palm (P8, 勞宮穴) of both hands and anterior thigh (ST32, 伏兎穴) and dorsum of foot (LI3, 太衝穴) of both feet. The correlation between severity of CHHF and HRV variables were analyzed.Results: In time domain analysis, there was significantly positive correlation between the severity of CHHF and both SDNN and RMSSD. In frequency domain analysis, there was significantly positive correlation between the severity of CHHF and TP, HF and HF Norm while there was significantly negative correlation between the severity of CHHF and LF Norm as well as between the severity of cold hypersensitivity of both hands and LF/HF ratio.Conclusions: The more severe CHHF is, the more increased the function of parasympathetic nerve system (PNS) and relatively decreased the function of sympathetic nerve system (SNS) is. Also, it has known that cold hypersensitivity could be caused by deficiency syndrome and qi deficiency has the same ANS tendency as CHHF. Therefore, in practical fields, this result can be helpful in planning treatment and deciding prognosis in respect of deficiency syndrome.

A Design of Fire Detection System based on Infrared Thermal Imaging & CCD Camera (적외선 열영상 및 CCD 카메라 기반 화재감지 시스템 설계)

  • Kim, Tae Wan;Choi, Chang Yong;Lee, Dong Myung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.597-598
    • /
    • 2013
  • A lot of fire and crime accidents are caused to a significant national loss. For example, the network and power facilities in national industry facilities, the fire risk region in large scale factories such as nuclear and thermal power plants, large-sized buildings, cultural properties, metal and steel mills, chemical plants, oil refineries. The development of a fire detection system that can detects the temperature and movement of objects as high-level quality is essential to prevent these incidents and accidents fundamentally. In this paper, the fire detection system based on infrared thermal imaging & CCD camera id designed to solve these problems.

  • PDF

The Method of medical Infrared Thermographic imaging using an Infrared LED Lamps (적외선 LED 램프를 이용한 적외선 체열 영상 진단)

  • Song, M.J.;Ryu, S.M.;Soo, B.M.;Kim, J.S.;Choi, W.S.;Park, C.B.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.282-282
    • /
    • 2010
  • LED Device was designed of electronic circuits of electrical power part for used Pspice student version and used Infrared LED lamps of load part. LED was used Computerized Electronic Medical Infrared Thermographic Imaging System for body surface Investigation of variable Body thermal asymmetry. It was knowledge body thermal Asymmetry of body surface and quantity body surface of electromagnetic wave to inflow electrical power part.

  • PDF

VISUALIZATION OF INTERNAL DEFECTS IN PLATE-TYPE NUCLEAR FUEL BY USING NONCONTACT OPTICAL INTERFEROMETRY

  • Park, Seung-Kyu;Park, Nak-Gyu;Baik, Sung-Hoon;Kang, Young-June
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.361-366
    • /
    • 2013
  • An imaging technique to visualize the internal defects in a plate-type nuclear fuel specimen was developed by using an active optical interferometer for a nondestructive quality inspection. A periodic thermal wave having a sinusoidal intensity pattern induced a periodical strain variation for the specimen. The varying strain image was acquired using an optical laser interferometer. The strain distribution over the internal defects will be distorted in an acquired strain image because a part of the thermal wave will be reflected from these defects during propagation. In this paper, internal defects were efficiently visualized by sequentially accumulating the extracted defect components. The experimental results confirmed that the developed visualization system can be a valuable tool to detect the internal defects in plate-type nuclear fuel.

The performance evaluation of Stirling cryocooler for thermal imaging system (II) : Life test (열상장비용 스터링 극저온 냉동기 특성평가 (II) : 수명시험)

  • 홍용주;박성제;김효봉;김양훈;권영주
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.324-327
    • /
    • 2003
  • The needs for the cryocooler which has high reliability and long MTTF are increased in the military and commercial thermal imaging system The gas contamination wear, leakage of the working fluid, fatigue and etc. have the significant effects on the reliability and MTTF(Mean Time To Failure) or MTBF(Mean Time Between Failure) of the Stirling cryocooler. In the KIMM, the Stilting cryocooler with the linear compressor was released after the several performance tests were performed. This paper describe the experimental facility for the MTTF evaluation and some typical results of the Stilling cryocooler.

  • PDF

On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography (전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구)

  • Hong, Dong-Pyo;Kim, Ho-Jong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology. with valuable suggestions for the future bearing fault detection.

Thermal imaging sensor design using 320×240 IRFPA (320×240 적외선 검출기를 이용한 열상센서의 설계)

  • Hong Seok Min;Song In Seob;Kim Chang Woo;Yu Wee Kyung;Kim Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.423-428
    • /
    • 2004
  • The development of a compact and high performance MWIR thermal imaging sensor based on the SOFRADIR 320${\times}$240 element IRCCD detector is described. The sensor has 20 magnification zoom optics with the maximum 40$^{\circ}$${\times}$30$^{\circ}$ of super wide field of view and 7.6 cycles/mrad of resolving power with the operation of attached micro-scanning system. In order to correct nonuniformities of detector arrays, we have proposed a multi-point correction method using defocusing of the optics and we have acquired the highest quality images. The MRTD of our system shows good results below 0.05K at spatial frequency 1 cycles/mrad at narrow field of view. Experimental data and obtained performances are presented and discussed.

Use of Speckle Pattern for Monitoring Thermal Energy Behavior of Battery Cathode

  • Kim, Byungwhan;Jang, Junyoung
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.396-400
    • /
    • 2016
  • Laser speckle patterns were used to monitor variations of thermal voltages of a cathode during a battery discharge. Discharge voltages measured with an oscilloscope were utilized as a figure of merit of thermal voltages in Zn metal. Using an optical imaging system, speckle patterns were taken for zinc metal surface over a time period of 3 minutes. Pixel sum distribution functions (PSDFs) were extracted from speckle patterns. Accumulated pixel sums quantified from PSDFs over an optimized grayscale range strongly correlated with discharge voltages. This suggested that dark matter or particles may have the capability of both absorbing and radiating thermal energies simultaneously. The black body-like properties were able to be validated by identifying coincidences with distinct features of a black body spectrum. The pixels belonging to the grayscale range were confirmed to represent dark matter of a speckle pattern. It was clear that dark matter was part of surface plasmon carriers. The proposed sensing system can be applied to monitor thermal energy variations in any material.