• Title/Summary/Keyword: Thermal image processing

Search Result 138, Processing Time 0.024 seconds

Formation of YSZ Coatings Deposited by Suspension Vacuum Plasma Spraying (서스펜션 진공 플라즈마 용사법을 통한 YSZ 코팅의 형성)

  • Yoo, Yeon Woo;Byon, Eungsun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.460-464
    • /
    • 2017
  • As increasing thermal efficiency of the gas turbine, the performance improvement of thermal barrier coatings is also becoming important. Ytrria stabilized zirconia(YSZ) is the most popular materials for ceramic top coating because of its low thermal conductivity. In order to enhance the performance of thermal barrier coatings for hot sections in the gas turbine, suspension plasma spraying was developed in order to feed nano-sized powders. YSZ coatings formed by suspension plasma spraying showed better performance than YSZ coatings due to its exclusive microstructure. In this research, two YSZ coatings were deposited by suspension vacuum plasma spraying at 400 mbar and 250 mbar. Microstructures of YSZ coatings were analyzed by scanning electron image(SEM) on each spraying conditions, respectively. Crystalline structure transformation was not detected by X-ray diffraction. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings were measured by laser flash analysis. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings containing horizontally oriented nano-sized pores and vertical cracks showed $0.6-1.0W/m{\cdot}K$, similar to thermal conductivity of YSZ coatings formed by atmospheric plasma spraying.

Analysis of Visible Light Communication Module Degraded by High Dose-Rate Gamma Irradiation using Thermal Infrared Image (적외선 열영상을 이용한 가시광 통신모듈의 고선량 감마선조사에 따른 열화 분석)

  • Cho, Jai-Wan;Hong, Seok-Boong;Koo, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1203-1209
    • /
    • 2011
  • In this paper, the degradation evaluation method of VLC (Visible Light Communication) wireless module after high dose rate gamma-ray irradiation using the thermal infrared camera is proposed. First, the heating characteristics of the active devices embedded in the VLC wireless module during the condition of normal operation is monitored by thermal infrared camera. By the image processing technique, the trends of the intensity of the heat emitted by the active devices are calculated and stored. The feature of the blob area including the area of the active devices in the thermal infrared image is extracted and stored. The feature used in this paper is the mean value of the gray levels in the blob area. The same VLC module has been gamma irradiated at the dose rate of about 4.0 kGy/h during 72 hours up to a total dose of 288 kGy. And then, the heating characteristics of the active devices embedded in the VLC wireless module after high dose gamma ray irradiation is observed by thermal infrared camera. The high dose gamma-ray induced degradation of the active devices embedded in the VLC module was evaluated by comparing the mean value of the blob area to the one of the same blob area of the VLC module before the gamma ray irradiation.

The Construction of Quality Inspection System for Sunroof Sealer Application Process Using SVM Algorithm (SVM 알고리즘을 활용한 선루프 실러도포 공정 품질검사 시스템 구축)

  • Yang, Hee-Jong;Jang, Gil-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2021
  • Recently, due to the aging of workers and the weakening of the labor base in the automobile industry, research on quality inspection methods through ICT(Information and Communication Technology) convergence is being actively conducted. A lot of research has already been done on the development of an automated system for quality inspection in the manufacturing process using image processing. However, there is a limit to detecting defects occurring in the automotive sunroof sealer application process, which is the subject of this study, only by image processing using a general camera. To solve this problem, this paper proposes a system construction method that collects image information using a infrared thermal imaging camera for the sunroof sealer application process and detects possible product defects based on the SVM(Support Vector Machine) algorithm. The proposed system construction method was actually tested and applied to auto parts makers equipped with the sunroof sealer application process, and as a result, the superiority, reliability, and field applicability of the proposed method were proven.

Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images (드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석)

  • Jo, Hyeon Jeong;Lee, Jae Wang;Jung, Na Young;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Recently interests on the application of thermal cameras have increased with the advance of image analysis technology. Aside from a simple image acquisition, applications such as digital twin and thermal image management systems have gained popularity. To this end, we studied the effect of emissivity on the DN (Digital Number) value in the process of derivation of a relational expression for converting DN to an actual surface temperature. The DN value is a number representing the spectral band value of the thermal image, and is an important element constituting the thermal image data. However, the DN value is not a temperature value indicating the actual surface temperature, but a brightness value indicating high and low heat as brightness, and has a non-linear relationship with the actual surface temperature. The reliable relationship between DN and the actual surface temperature is critical for a thermal image processing. We tested the relationship between the actual surface temperature and the DN value of the thermal image, and then the radiation adjustment was performed to better estimate actual surface temperatures. As a result, the relation graph between the actual surface temperature and the DN value similarly show linear pattern with the relation graph between the radiation-controlled non-contact thermometer and the DN value. And the non-contact temperature after adjusting the emissivity was closer to the actual surface temperature than before adjusting the emissivity.

Thermal Infrared Image Enhancement Method Based on Retinex (Retinex 처리에 기반한 적외선 열상 이미지의 화질 개선)

  • Lee, Won-Seok;Kim, Kyoung-Hee;Lee, Sang-Won
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.32-39
    • /
    • 2011
  • The output image of the uncooled thermal infrared camera is difficult the identification of target because of the limited dynamic range and the various noises. Retinex algorithm based on the theory of the human visual perception is known to be effective contrast enhancement technique. However, the image quality is insufficient when it is adopted to the narrow dynamic range image as the infrared image. In this paper, we propose the revised retinex algorithm to enhance the contrast of the infrared image. To improve the contrast enhancement performance, we designed the new dynamic range compression function instead of log function. To reduce the noise and compensate the loss of edge, we added the contrast compensation procedure in the MSR image generation process. According to the output picture comparing and numerical analysis, the proposed algorithm shows the better contrast enhancement performance and the more suitable method for the infrared image enhancement.

Development of an intelligent camera for multiple body temperature detection (다중 체온 감지용 지능형 카메라 개발)

  • Lee, Su-In;Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.430-436
    • /
    • 2022
  • In this paper, we propose an intelligent camera for multiple body temperature detection. The proposed camera is composed of optical(4056*3040) and thermal(640*480), which detects abnormal symptoms by analyzing a person's facial expression and body temperature from the acquired image. The optical and thermal imaging cameras are operated simultaneously and detect an object in the optical image, in which the facial region and expression analysis are calculated from the object. Additionally, the calculated coordinate values from the optical image facial region are applied to the thermal image, also the maximum temperature is measured from the region and displayed on the screen. Abnormal symptom detection is determined by using the analyzed three facial expressions(neutral, happy, sadness) and body temperature values. In order to evaluate the performance of the proposed camera, the optical image processing part is tested on Caltech, WIDER FACE, and CK+ datasets for three algorithms(object detection, facial region detection, and expression analysis). Experimental results have shown 91%, 91%, and 84% accuracy scores each.

Novel control scheme for the absence of the thermoelectric(TEC) of infrared detector in an Uncooled thermal system (비냉각 열상시스템에서의 적외선 검출기의 열전소자(TEC) 부재에 대한 효율적인 제어기법)

  • Kim, Yong-Jin;Seo, Jae-Gil;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2335-2340
    • /
    • 2012
  • The detector is an uncooled detector system that functions inside the thermoelectric cooler (TEC) equipped with features instead of the cooler. The function of the thermoelectric device to control the temperature of the detector based on a function of temperature to prevent degradation of image quality to perform the role, the latest technology trend by removing the thermoelectric device size, cost a lot of effort to reduce has been studied. In this paper, It would be proposed of the actual test result using real chamber environment of for the best TECless algorithm as to minimize the degradation of image quality and obtain the low price of the uncooled detector.

Thermal Strain Analysis of Composite Materials by Electronic Speckle Pattern Interferometry

  • Kim, Koung-Suk;Jang, Wan-Shik;Hong, Myung-Seak;Kang, Ki-Soo;Jung, Hyun-Chul;Kang, Young-Jun;Yang, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.477-482
    • /
    • 2000
  • This study discusses a non-contact optical technique (electronic speckle pattern interferometry) that is well suited for thermal deformation measurement without any surface preparation and compensating process. Fiber reinforced plastics ($[0]_{16},\;[0/90]_{8S}$) were analyzed by ESPI to determine their thermal expansion coefficients. The thermal expansion coefficient of the transverse direction of a uniaxial composite is evaluated as $48.78{\times}10^{-6}(1/^{\circ}C)$. Also, the thermal expansion coefficient of the cross-ply laminate $[0/90]_{8S}$ is numerically estimated as $3.23{\times}10^{-6}(1/^{\circ}C)$ that is compared with that measured by ESPI.

  • PDF

Ultrasonic Image of the Side Drilled Holes in SS Reference Block as Combining Bases of Support for Spatial Frequency Response

  • Koo, Kil-Mo;Song, Chul-Hwa;Beak, Won-Pil;Kang, Hee-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. There is a kind of specimen, one is a reference block having 1/4T, 1/2T, 3/4T side drilled holes as main run piping material of the steam generator in nuclear power plants. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously. Further more we have studied the reconstruction method of the amplitude and phase images, the enhancement method of the defect images' contrast.

  • PDF