• Title/Summary/Keyword: Thermal force

Search Result 908, Processing Time 0.025 seconds

Effect of Restraint Stress on the Precipitation Behavior and Thermal Fatigue Properties of Simulated Weld Heat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강 재현 용접 열 영향부의 석출거동 및 열피로 특성에 미치는 구속응력의 영향)

  • Han, Kyutae;Kang, Yongjoon;Lee, Sangchul;Hong, Seunggab;Jeong, Hongchul;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.6-12
    • /
    • 2015
  • Thermal fatigue life of the automobile exhaust manifold is directly affected by the restraint force according to the structure of exhaust system and bead shape of the welded joints. In the present study, the microstructural changes and precipitation behavior during thermal fatigue cycle of the 18wt% Cr ferritic stainless steel weld heat affected zone (HAZ) considering restraint stress were investigated. The simulation of weld HAZ and thermal fatigue test were carried out using a metal thermal cycle simulator under complete constraint force in the static jig. The change of the restraint stress on the weld HAZ was simulated by changing the shape of notch in the specimen considering the stress concentration factor. Thermal fatigue properties of the weld HAZ were deteriorated during cyclic heating and cooling in the temperature range of $200^{\circ}C$ to $900^{\circ}C$ due to the decrease of Nb content in solid solution and coarsening of MX type precipitates, laves phase, $M_6C$ with coarsening of grain and softening of the matrix. As the restraint stress on the specimen increased, the thermal fatigue life was decreased by dynamic precipitation and rapid coarsening of the precipitates.

A Study of Carbon Nanotube Channel Field-Effect Devices (탄소 나노튜브 채널을 이용한 전계효과 이온-전송 소자 연구)

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.168-174
    • /
    • 2006
  • We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  • PDF

A fundamental study on the jet fan capacity for smoke control considering thermal buoyancy force in tunnel fires (터널 화재 시 열부력을 고려한 제연용 제트팬 용량산정에 관한 기초 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Jo, Jong-Bok;Lee, Seung-Chul;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.501-511
    • /
    • 2018
  • As a result of the recent revision of the 'Guideline for Installation and Management of Fire Prevention Facility in Road Tunnels', the thermal buoyancy has to be taken into account when calculating the capacity of jet fans for smoke control in tunnel fires. However, there is no detailed methodologies for considering thermal buoyancy, so further study is needed. In this study, the thermal buoyancy in the tunnel is calculated by 3-D numerical simulation to consider the thermal buoyancy in case of fire in tunnels, and the relationship between heat buoyancy and vehicle drag, And the method of calculating the capacity of the jet fan for smoke control in tunnels. According to the analysis results, heat buoyancy acts as a resistance force in the case of a down-slope tunnel, and the pressure rise of jet fan for smoke control is not simply determined by the value of heat buoyancy at the entrance of the tunnel and the value of the vehicle drag at the exit. And it is analyzed that it is necessary to carry out a comprehensive review according to the location of the fire vehicle in tunnels.

Thermal Performance of a Thermosiphon with a Step-Change Elevation for Medium-temperature Solar Thermal Applications (중온 태양열 응용을 위해 수평 단차를 갖는 열사이펀의 열적 성능)

  • Lee, Se-Kwon;Jung, Eui-Guk;Boo, Joon-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.251-254
    • /
    • 2009
  • Thermal performance of a thermosiphon for medium-temperature solar thermal application was investigated. The working fluid was Dowtherm A and the container was made of STS 316L. The thermosiphon had a outer diameter of 12.7 mm and a total length of 2 m, where the evaporator and the condenser had the same length of 0.3 m and the adiabatic section was 1.4 m. Both the evaporator and the condenser were aligned horizontal with an elevation difference of 0.18 m to utilize the gravitational force for the working-fluid return. The optimum fill charge ratio of the working fluid was investigated to obtain the maximum heat transport with the lowest thermal resistance. The maximun input thermal load was 500 W and thermal resistance was $0.60^{\circ}C/W$.

  • PDF

Thermal-Structural Coupled Field Analysis of the Circumferential Pressing Type Brake Disc (원주가압형 브레이크 디스크의 열-구조 연성해석)

  • Kim, Hyeong-Hoon;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-74
    • /
    • 2008
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration during a braking. To solve these problems, extensive research for the brake shape has been conducted such as drilling cooling holes on the brake disc, accommodating ventilated holes and etc. In this study, we suggest the circumferential pressing type brake disc in order to improve its cooling performance. In order to compare the cooling-down efficiency between the conventional side-pressing type and the circumferential-pressing type, we adopted the FMVSS 105-77 as thermal analysis conditions and This newly proposed concept has been verified using Thermal-structure Coupled Field Analysis along with comparative analysis with the existing ventilated disk.

Thermal instability during the melting process in an isothermally heated horizontal cylinder (등온가열 수평원관내 융해과정동안의 열적 불안정성)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2046-2056
    • /
    • 1996
  • The constrained melting inside an isothermally heated horizontal cylinder has been repeatedly investigated in many studies only for the moderate Rayleigh numbers. This study extends the range of Rayleigh numbers to systematically investigate the transition during melting processes, especially focusing on the complex multi-cellular flow pattern and thermal instability. The enthalpy-porosity formulation, with appropriate source terms to account for the phase change, is employed. For low Rayleigh numbers, initially developed single-cell base flow keeps the flow stable. For moderate Rayleigh numbers, even small disturbances in balance between thermal buoyance force and viscous force result in branched flow structure. For high Rayleight numbers, Benard type convection is found to develop within a narrow gap between thee wall and the unmelted solid. The marginal Rayleigh number and the corresponding wave number are in excellent agreement with those from linear stability theory.

Optimum Shape Design Techniques on Direct Roller of Molten Metal Considering Thickness Control of Width Direction (폭방향 두께제어를 고려한 용탕직접 압연로울의 최적형상 설계기법)

  • Kang, C.G.;Kim, Y.D.;Jung, Y.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.73-85
    • /
    • 1997
  • The rolling force and roll deformation behavior in the twin roll type strip continuous casting process has been computed to estimate the thermal charcteristics of a caster roll. To calculation of rolling force, the relationship between flow stress and strain for a roll material and casting alloy are assumed as a function of strain-rate and temperature because mechanical properties of a casting materials depends on tempera- ture. The three dimensional thermal dlastic-plastic analysis of a cooling roll has also been carried out to obtain a roll stress and plastic strain distributions with the commercial finite element analysis package of ANSYS. Temperature fields data of caster roll which are provided by authors were used to estimated of roll deformation. Roll life considering thermal cycle is calculated by using thermal elastic-plastic analysis results. Roll life is proposed as a terms of a roll revolution in the caster roll with and without fine failure model on the roll surface. To obtain of plastic strain distributions of caster roll, thermomechan- ical properties of roll sleeve with a copper alloy is obtained by uniaxial tensile test for variation of temperature.

  • PDF

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

An Analysis of Performance of Floating-Ring Journal Bearing Including Thermal Effects (유막의 온도변화를 고려한 플로팅 링 저어널베어링의 성능해석)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2001
  • In this paper, the thermal effects on the performance of floating ring journal bearing are investigated theoretically. The numerical analyses include pressure drop at inner film due to a centrifugal force, fluid momentum effects of supply oil into inner film and thermal effects in lubricating films. All performance data are presented as the rotating speed of journal from 10,000 rpm to 70,000 rpm.

Thermal analysis of High speed train Eddy current brake system (고속전철 와전류 제동장천의 마그네트 열해석)

  • Jung, S.J.;Kim, D.H.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.397-400
    • /
    • 2001
  • In eddy, current brake system(BS), high current may flow for increase of braking force within a short time. Therefore, the estimation of thermal characteristics for BS is required. In this paper, the thermal characteristics of eddy-current brake for the Korean high speed train are analyzed by using 2-dimensional Finite Element Method (2D-FEM) and measured.

  • PDF