• Title/Summary/Keyword: Thermal force

Search Result 905, Processing Time 0.03 seconds

A Study on the Thermal Behavior Characteristic of Drum Brake considering Braking Patterns (제동 패턴을 고려한 드럼 브레이크의 열적 거동 특성에 대한 연구)

  • Lee, Kye-Sub;Son, Sung-Soo;Yang, Ki-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.145-154
    • /
    • 2006
  • Each part of drum brake system is loaded by continual mechanical force and thermal force every time of braking, so enough strength and stability are required. Thermal characteristic is one of the important factors in drum brake systems design. This paper presents the thermal performance such as temperature distribution and thermal contact stress of drum brake system considering several braking patterns; 80th heat braking test mode, heat fade braking test mode, general road mode, steep slope road mode and off road mode. Transient heat transfer analysis and Thermo elastic contact analysis is executed to obtain the temperature distribution, and to evaluate thermal stress of drum brake by using ABAQUS/Standard code. This procedure of analysis can effectively be used to improve the quality problem of brake system and to get design guideline of the new product.

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

Convergent Analysis through Durability by Thermal Stress at Drum Brake (드럼 브레이크에서의 열응력에 의한 내구성을 통한 융합적 분석)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.139-144
    • /
    • 2020
  • In this study, a simulation analysis on the drum itself and the brake was examined. And the analysis results were obtained by investigating the thermal analysis results and the durability through structural analysis. Through the thermal stress and structural analyses on the lining under the force due to the brake cylinder, the drum inside under the force due to the expansion of the lining and the drum under the force due to the rotation of the axis, it was confirmed at which part the amounts of equivalent stress and deformation became large. If applied to the brake disc design by combining the results of this study, it is considered to be large utilization at increasing the prevention against the thermal deformation and its durability. The results of this study can be usefully applied to the durability design that can withstand the thermal stress in the drum brake. By applying the durability analysis at the seam of railroad track by season, this investigation result is seen to be favorable as the convergent research applied to the aesthetic design.

Thermal Deformation Error Analysis and Experiment of a Linear Motor (Linear Motor의 열변형 오차해석 및 실험)

  • 최우혁;민경석;오준모;최우천;홍대희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.286-289
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection pomt on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In thls paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those cond~tions, Rotary compressor is adopted as test sample, because it is very difficult to measurc the injection forces from internal excitat~on to shell. It has also been obtained that relatively higher force IS transmitted through three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation wlth curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum (질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가)

  • 김태곤;김남균;박진구;신형재
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

A Study on Thermal Analysis in Ventilated Disk Brake by FEM (FEM을 이용한 벤틸레이티드 디스크 브레이크 열응력 해석에 관한 연구)

  • Kim, Sung-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.544-549
    • /
    • 2009
  • Thermal brake judder caused by the high friction heat of the brake disk. Hot thermal judder makes serious problems such as to be unstability to drivers or to decrease braking force of automobile. Because thermal judder vibration makes high vibration occurrence and thermal deformation of brake disk. Therefore it Is necessary to reduce or eleminate thermal Judder phenomenon by understanding and investigation. This paper introduces the thermal deformation arising from friction heat generation in braking and proposes the FEM analysis to predict the distribution of temperature and thermal deformation. the results of the FEM analysis show the deformed shape and temperature distribution of the disk brake. The optimization is performed to minimize the thermal judder of ventilated disc brake that is induced by the thermal deformation of the disk brake.

  • PDF

FE-analysis of Shrink Fits and Internal Clearance for Ball Bearing of Machine Tool (공작기계용 볼 베어링의 억지끼워맞춤과 내부틈새변화에 관한 해석적 연구)

  • Kim, Woong;Lee, Choon-Man;Hwang, Young-Kug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.135-141
    • /
    • 2009
  • The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of clearance after installation to the interference fits, and thermal expansion must be considered. The purpose of this study is to grasp the internal clearance variation and behavior of a bearing which is a deep connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). Finite element analysis is performed by using commercial code ANSYS according to variation of thermal condition and rotational speeds. This paper presents correct negative internal clearance according to temperature during operation. Furthermore, interrelation between thermal expansion and contraction are presented to maintain adequate contact force for three type of spindle system (HSK-A60, HSK-40E, HSK-32E). The influence of the centrifugal force and Internal clearance variation of bearing is studied to operating rotational speed.

Analytical study of slant end-plate connection subjected to elevated temperatures

  • Zahmatkesh, F.;Osman, M.H.;Talebi, E.;Kueh, A.B.H.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.47-67
    • /
    • 2014
  • Due to thermal expansion, the structural behaviour of beams in steel structures subjected to temperature increase will be affected. This may result in the failure of the structural members or connection due to extra internal force in the beam induced by the thermal increase. A method to release some of the thermally generated internal force in the members is to allow for some movements at the end supports of the member. This can be achieved by making the plane of the end-plate of the connection slanted instead of vertical as in conventional design. The present paper discusses the mechanical behaviour of beams with bolted slant end-plate connection under symmetrical gravity loads, subjected to temperature increase. Analyses have been carried out to investigate the reduction in internal force with various angles of slanting, friction factor at the surface of the connection, and allowable temperature increase in the beam. The main conclusion is that higher thermal increase is tolerable when slanting connection is used, which means the risk of failure of structures can be reduced.

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

An Investigation of Radiation Heat Transfer on The Horizontal Fin of An External Fuel Tank by Flame of a Flying Flare (날아가는 섬광탄이 연료탱크 수평핀에 미치는 복사열전달 연구)

  • Jung, Daehan;Kang, Chihang;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.197-203
    • /
    • 2014
  • In this paper, the effect of unsteady radiation on the horizontal fin of an external fuel tank by flame of a flying flare was analysed to see the temperature increase of the fin and the thermal impact on the fin. Radiation between two surfaces was calculated using the concept of radiation resistance of surface and space including radiation, irradiation and shape factor for two flying trajectories of a flare, maximum temperature of 2200 K, emissivity of 0.95, flying velocity of 30 m/s, and thermal surface area of $0.01m^2$. The result shows that the temperature increase of the fin is 0.236 K, and the thermal effect on the fin is ignorable. And it was found that temperature is increased a little because small amount of heat energy can be radiated due to the short exposure time to the heat source.