• Title/Summary/Keyword: Thermal expansion hysteresis

Search Result 19, Processing Time 0.028 seconds

Low Thermal Expansion of $Al_2TiO_5$ Ceramics Prepared from Electrofused Powders

  • Kim, Ik-Jin;Kwak, Hyo-Sup
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.414-418
    • /
    • 1999
  • The synthesis of polycrystalline $Al_2TiO_5$ ceramics with low thermal expansion by fusion in an electric arc furnance was investigated. The thermal expansion curves of $Al_2TiO_5$ ceramics were lowered because of microcracks caused by the strong thermal expansion anisotropy of the crystal axes and were accompanied by hysteresis curves. These phenomena are explained by the opening and closing of microcracks. The difference in microcracking temperatures of dilatometric cooling curves in the range of 400~$620^{\circ}C$ is caused by the difference in sintering temperature, grain size and stabilization status.

  • PDF

Effect of Grain Size on the Thermomechanical Properties of $Al_2 TiO_5$ Ceramics

  • Kim, Ik-Jin;Kweon, Oh-Seong;Ko, Young-Shin;Constatin Zografou
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.246-250
    • /
    • 1996
  • The thermomechanical properties of materials from the system Al2O3-SiO2-TiO2(Tialite-Mullite) were investigated by correlating the thermal expansion anisotroypy, flexural strength and Young's modulus with grain size and atructural microcracking during cooling. Microcracking temperatures were determined by measuring the hysteresis of the thermal expansion anisotropy with dilatometry. Single phase Aluminium Titanate is a low strength material, while composites with more than 10 vol% mullite as second phase enhance the Young's modulus, thermal expansion coefficient and room temperature strength.

  • PDF

Influence of Microstructures on Thermal Expansion Behavior of $Al_2TiO_{5}$ Ceramics ($Al_2TiO_{5}$ Ceramics의 열팽창거동에 대한 미세구조의 영향)

  • 김익진;이기성
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.40-46
    • /
    • 2001
  • The thermal stability of $Al_2TiO_{5}$ ceramics was improved by formation of solid solution with MgO, such as $MgAl_2O_4$ spinel through electrofusion in an arc furnance, and by limitation of grain size and microcracks with $SiO_2$, $ZrO_2$ and ${\alpha}$-$Al_2O_3$. The low thermal expansion properties of $Al_2TiO_{5}$ composites show the thermal hysteresis curves due to the strong anisotropy of $Al_2TiO_{5}$. These phenomena are explained by the opening and closing of microcracks. The relation between thermal hysteresis, microstructures and sintering temperature were studied by dilatometry.

Thermal Shock Resistance of $Al_2$TiO$_5$ Ceramics Prepared from Electrofused Powders (전기용융 분말로부터 합성된 $Al_2$TiO$_5$ Ceramics의 열충격 저항성)

  • ;Constantin Zografou
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1061-1069
    • /
    • 1998
  • The thermal instability of Al2TiO5 Ceramics was contrlled by solid solution with MgO SiO2 and ZrO2 through electrofusion in an arc furnace. The thermal expansion properties of Al2TiO5 composites show the hysteresis due to the strong anisotropy of The crystal axes of these material. These phenomena are ex-plained by the opening and closing of microcracks. The difference in microcracking temperatures e.g 587.6(ATG2), 405.9(ATG3) and 519.7$^{\circ}C$(ATG4) is caused by the difference in grain size and stabilizer type. The thermal shock behaviour under cyclic conditions between 750-1400-75$0^{\circ}C$ show no change in mi-crostructure and phase assemblage for all three stabilized specimens. After the thermal loading test at 110$0^{\circ}C$ for 100hrs. ATG1 and ATG2 materials decomposes completely to its components corundum and ru-tile in both cases. However with approximatelly 20% retention of the Al2TiO5 Thus in order to prevent decomposition of the stabilized material in the critical temperature range 800-130$0^{\circ}C$ it must be traversed within a short period of time.

  • PDF

Development of $Al_2TiO_5$-Clay Composites for Infrared Radiator ($Al_2TiO_5$-점토 복합체를 이용한 적외선 방사체의 개발)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • The thermal expansion, thermal stability, mechanical strength and infrared radiative property of Al2TiO5-clay composites, prepared from synthesized Al2TiO5 and clay, were investigated to develop a material for far infrared radiators. The emittance of composites containing 10~50 wt% clay, heated at 1,20$0^{\circ}C$ for 3 h, increased with increasing clay content and emittance was about 0.3 and 0.92 in the ranges of 3,400~2,500 cm-1 and 2,500~400cm-1, respectively. The bulk density and bending strength of the Al2TiO5-clay composites increased with increasing clay content. 50 wt% Al2TiO5-50 wt% clay composite, heat-treated at 1,20$0^{\circ}C$, had an adequate strength for infrared radiators; 80 MPa. The degree of thermal expansion hysteresis decreased with increasing clay content and the mean thermal expansion coefficient increased with increasing clay content. The thermal expansion coefficient of 50 wt% Al2TiO5-50 wt% clay composite heated at 1,20$0^{\circ}C$ was 5.78$\times$10-6/$^{\circ}C$.

  • PDF

Control of Crowning Using Residual Stress induced by the Difference of Tehermal Expansion Between Ceramic and Carbon Steel in Ceramic Cam Follower (열팽창계수차에 기인된 잔류응력을 이용한 세라믹 캠 팔로우어의 크라우닝 제어)

  • Choe, Yeong-Min;Lee, Jae-Do;No, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.703-708
    • /
    • 2000
  • As the engine design changes to get high efficiency and performance of commercial diesel engine, surface w wear of the earn follower becomes an important issue as applied load increasing at the contact face between cam follower and cam. We developed the ceramic cam follower made of sili$\infty$n nitride ceramic which was more wear resistant than the cast iron or sintered metal cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel body using an active brazing alloy without the interlayer. In-situ crowning(R), resulted from the difference of thermal expansion coefficient between ceramic and carbon steel after direct brazing without any stress-relieving inter]ayer, could be controlled. When a earbon steel was heated above $A_{c1}$ point and then c$\infty$led, the expansion curve represented a hysteresis. Appropriate crowning was achieved below the $A_{c1}$ point(about $723^{\circ}C$) and crowning increased with brazing temperature exponentially above the $A_{c1}$ point. Optimum brazing temperature range was from 700 to $720^{\circ}C$. We developed successfully the ceramic cam follower having appropriate crowning and being inexpensive. Also we could successfully control the crowning of ceramic earn follower by hysteresis behavior of thermal expansion of earbon steel during direct brazing process.

  • PDF

Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.109-112
    • /
    • 2003
  • The grain-boundary microcracking materials in the system $Al_2$TiO$_{5}$ -ZrTiO$_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$ K loin compared to 8.29$\times$10$^{6}$ K of pure ZrTiO$_4$and 0.68$\times$10$^{6}$ K of polycrystalline $Al_2$TiO$_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of $Al_2$TiO$_{5}$ , 9.70$\times$10$^{6}$ K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal a ies of the $Al_2$TiO$_{5}$ phase.

Erratum to: "Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy"

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.317-321
    • /
    • 2003
  • The grain-boundary microcracking materials in the system A1$_2$Ti $O_{5}$ -ZrTi $O_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$K compared to 8.29$\times$10$^{-6}$K of pure ZrTi $O_4$and 0.68$\times$10$^{-6}$K of polycrystalline A1$_2$Ti $O_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of A1$_2$Ti $O_{5}$ , 9.70$\times$10$^{-6}$K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal axes of the A1$_2$Ti $O_{5}$ phase.

Preparation and Properties of Cordierite Aluminium Titanate Composites (코디에라이트-티탄산알루미늄 복합체의 제조 및 특성)

  • 송휴섭;김상우;장성도;손용배
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.345-354
    • /
    • 1990
  • The densification behaviro and resulting properties of cordierite-aluminium titanate composites containing 5 to 40wt.% aluminium titanate were investigated. Compared with cordierite monolithics a substantial increase of sintering temperature range for composites was observed, which was due to the formation of cordierite and glass phase at relatively low temperatures. The bending strength of composites showed its maximum at 30wt.% aluminium titanate content, which was about 50% increase relative to the cordierite monolithics, then decreased by a small amount at 40wt.% aluminium titanate content. The decrease was explained by the increase of microcracks whose presence was confirmed by the hysteresis of thermal expansion curve of composites. However, the microcracks formed was not severe enough to produce a significant decrease in strength, which was also evidenced by the continuous increase of thermal expansion coefficient up to 40wt.% aluminium titanate content.

  • PDF

Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements (적층식 압전소자를 이용한 고속 서보밸브 시스템의 개발)

  • 방영봉;이교일;임원규;주춘식;허재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.733-736
    • /
    • 2003
  • This paper presents two systems of two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. Two flapper moving mechanisms proposed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental results show that the first flapper moving mechanism has the frequency response of over 500 Hz and the second one has the response of over 600 Hz. And the first simplified servovalve system rising the first flapper moving mechanism has the frequency response of about 150 Hz, and the second system has the response of about 300 Hz at the supply pressure of 210 bar

  • PDF