• Title/Summary/Keyword: Thermal expansion data

Search Result 161, Processing Time 0.025 seconds

Comparison of the Fire Resistance Performance of Firestop Systems on Non-Metallic Pipes, Based on the Type of Through-Penetration Sleeve Used (비금속관 설비관통부의 슬리브 종류에 따른 내화성능 비교)

  • Jeong, A-Yeong;Choi, Hong-Beom;Park, Jin-O;Lee, Hyung-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.301-302
    • /
    • 2023
  • In this study, we aimed to identify changes in fire resistance according to the type of sleeves used for pipe penetrations and to examine their accreditation of fire resistance performance and use them as basic data. The test results of fire resistance according to the type of sleeve used in non-metallic pipe facilities showed that the temperature on the support side was higher for sleeves with higher thermal conductivity. For the temperature on the surface of the pipes, in the case of galvanized steel plates, steel pipes, and structures without sleeves, the highest temperature was observed after the expansion of the firestop material for 46 to 53 minutes and then decreased. PVC sleeves showed a steady increase in temperature until 53 minutes, after which the temperature did not increase further. In addition, for non-metallic pipes, the effect of the type of sleeve on fire resistance is considered to be insignificant because the lower part (heating direction of the furnace) under the support structure is cut off to block the heat during the two-hour fire resistance test.

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Relationship assessment among land use and land cover and land surface temperature over downtown and suburban areas in Yangon City, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.353-364
    • /
    • 2016
  • Yangon city is experienced a rapid urban expansion over the last two decades due to accelerate with the socioeconomic development. This research work studied an investigation into the application of the integration of the Remote Sensing (RS) and Geographic Information System (GIS) for observing Land Use and Land Cover (LULC) patterns and evaluate its impact on Land Surface Temperature (LST) of the downtown, suburban 1 and suburban 2 of Yangon city. The main purpose of this paper was to examine and analyze the variation of the spatial distribution property of the LULC of urban spatial information related with the LST and Normalized Difference Vegetation Index (NDVI) using RS and GIS. This paper was observed on image processing of LULC classification, LST and NDVI were extracted from Landsat 8 Operational Land Imager (OLI) image data. Then, LULC pattern was linked with the variation of LST data of the Yangon area for the further connection of the correlation between surface temperature and urban structure. As a result, NDVI values were used to examine the relation between thermal behavior and condition of land cover categories. The spatial distribution of LST has been found mixed pattern and higher LST was located with the scatter pattern, which was related to certain LULC types within downtown, suburban 1 and 2. The result of this paper, LST and NDVI analysis exhibited a strong negative correlation without water bodies for all three portions of Yangon area. The strongest coefficient correlation was found downtown area (-0.8707) and followed suburban 1 (-0.7526) and suburban 2(-0.6923).

Steel Design of Continuously Reinforced Concrete Pavement based on the Width of Transverse Crack (횡방향 균열 폭에 기초한 연속철근 콘크리트포장의 철근설계)

  • Kim, Kyeong-Jin;Kim, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.106-114
    • /
    • 2009
  • The steel design based on the width of transverse crack which is the major factor to affect a long-term performance of continuously reinforced concrete pavement was developed. For this study, twenty-one cities of Texas were selected and the temperature data was collected at those locations during the past ten years. From the data, zero-stress temperatures were calculated by the PavePro program and the widths of transverse crack were analyzed by the CRCP program. The variables used to this numerical analysis were slab thickness, coefficient of thermal expansion of concrete, steel ratio, and design temperature. The total of 448 factorial runs were made and the regression analysis was performed using the results. Steel ratios from the regression equations were backcalculated and a steel design table was proposed.

Assessment of Viscoplastic Deformation Behavior of Eutectic Solder and Lead-free Solder (유연 솔더와 무연 솔더의 점소성 변형거동 평가)

  • Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.17-27
    • /
    • 2011
  • This paper describes an experimental study and finite element analysis (FEA) carried out for investigating thermal deformation behavior of solders, resulting from temperature change in the solder. With such a goal in mind, a shear specimen that was composed of two metal bars having different coefficient of thermal expansion and solder blocks placed between two bars was designed and fabricated. Two different types of solder blocks, eutectic solder (Sn/36Pb/ 2Ag) and lead-free solder (Sn/3.0Ag/0.5Cu) were tested as well. Fringe patterns for several temperature steps were recorded and analyzed for three temperature cycles using a real-time moir$\acute{e}$ setup. The experimental data was verified with FEA and used to evaluate the suitability for numerous solder constitutive models available in literatures. FEA employing Anand material model suggested by Darveaux et al. and Chang et al. were found to be in an excellent agreement with the experimental results for the eutectic solder and the lead-free solder, respectively. In addition, numerical predictions on bending displacement, shear strain and viscoplastic distortion energy are documented and viscoplastic deformation behavior of two types of solder material are compared.

Evaluation of Properties of 80, 130, 180 MPa High Strength Concrete at High Temperature with Heating and Loading (고온가열 및 하중재하에 따른 80, 130, 180 MPa 초고강도콘크리트의 역학적특성평가)

  • Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Tae-Gyu;Lee, Seong-Hun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.613-620
    • /
    • 2013
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. Because of this, standards and researches on the degradation of the mechanical properties of concrete at high temperatures have been presented. However, research data about the state that considering the loading condition and high-strength concrete is not much. Therefore, this study evaluated the high-temperature properties of high-strength concrete by loading condition and elevated temperature. The stress-strain, strain at peak stress, compressive strength, elastic modulus, thermal strain and the transient creep are evaluated under the non-loading and $0.25f_{cu}$ loading conditions on high strength concrete of W/B 12.5%, 14.5% and 20%. Result of the experiment, decrease in compressive strength due to high temperature becomes larger as the compressive strength increases, and residual rate of elastic modulus and compressive strength is high by the shrinkage caused by loading and thermal expansion due to high temperature are offset from each other, at a temperature above $500^{\circ}C$.

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Projection of Future Sea Level Change Based on HadGEM2-AO Due to Ice-sheet and Glaciers (HadGEM2-AO 기반의 빙상과 빙하에 의한 미래 해수면 변화 전망)

  • Kim, Youngmi;Goo, Tae-Young;Moon, Hyejin;Choi, Juntae;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.367-380
    • /
    • 2019
  • Global warming causes various problems such as the increase of the sea surface temperature, the change of coastlines, ocean acidification and sea level rise. Sea level rise is an especially critical threat to coastal regions where massive population and infrastructure reside. Sea level change is affected by thermal expansion and mass increase. This study projected future sea level changes in the 21st century using the HadGEM2-AO with RCP8.5 scenario. In particular, sea level change due to water mass input from ice-sheets and glaciers melting is studied. Sea level based on surface mass balance of Greenland ice-sheet and Antarctica ice-sheet rose 0.045 m and -0.053 m over the period 1986~2005 to 2081~2100. During the same period, sea level owing to dynamical change on Greenland ice-sheet and Antarctica ice-sheet rose 0.055 m and 0.03 m, respectively. Additionally, glaciers melting results in 0.145 m sea level rise. Although most of the projected sea level changes from HadGEM2-AO are slightly smaller than those from 21 ensemble data of CMIP5, both results are significantly consistent each other within 90% uncertainty range of CMIP5.