• Title/Summary/Keyword: Thermal energy storage

Search Result 717, Processing Time 0.03 seconds

Reliability Evaluation of Miniaturized Measurement Cell of Effective Thermal Conductivity for Hydrogen Storage Materials (소형 수소저장물질 유효열전도도 측정장치의 신뢰성 평가)

  • LEE, YOUNG HYO;IM, YEON HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.431-437
    • /
    • 2015
  • Recently, a miniaturized measurement cell of effective thermal conductivity was developed to evaulate the heat transfer characteristics of hydrogen stroage material in the initial step of its development. In this work, the realiablity issues which can occur from this miniaturization of measurement cell were studied in detail by both experiments and numerical simulation of heat transfer. $LaNi_5$ as a reference was used for the reliability evaluation of the miniaturized measurement cell. Numerical simulations of heat transfer for this measurement system were verified through comparison with the experimental data. Under these reliablity studies, we discuss how to overcome the inherent drawbacks of this miniaturized system in order to achieve the high reliability.

A Study on the Thermal Characteristics of Cheju Seasonal Installation (제주 태양열 계간 축열단지의 열적 특성에 관한 연구)

  • Han, Yu-Ri;Park, Youn-Cheol;Chun, Won-Gee;Kang, Yong-Heack;Lee, Sang-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.563-566
    • /
    • 2006
  • An investigation has been carried for the thermal characteristics of the seasonal storage installation in Cheju. It features the solar collector area of $340m^2$ and the storage capacity of $600m^3$. Four different types of solar collector systems are compared for their performance of collecting solar energy throughout the year. Of these, two are made of tubular shaped vacuum collectors and the others are flat plate collectors. Results indicate that each system could play an important role in exploiting solar energy depending on the temperature range in its operation. Especially, the vacuum collectors outperformed the others when the inlet temperatures of the collector loop were raised beyond $40m^2$. This became more conspicuous as the return temperatures from the storage tank rose reflecting the seasonal variation. Due to the large heat capacity of the storage tank, temperature changes were rather small compared to those in the collecting loop regardless of seasonal fluctuations.

  • PDF

Study on the Basic Design of Large Scale Solar Thermal Power Plant System (대규모 태양열 발전시스템 기본설계 특성 분석)

  • Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Jin-Su;Lee, Sang-Nam;Yu, Chang-Kyun;Yun, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.576-579
    • /
    • 2006
  • This paper describes characteristics and procedure of the basic design of large scale solar thermal power plant system. The evaluation is based on the operating data of CESA-I, solar central receiver plant. In order to evaluate the solar irradiation on the receiver, it is necessary to calculate the amount of thermal energy consumption at steam turbine and storage system in the STPPS. Especially, it is need to take into account of the storage and operating time to design a plant efficiently. In addition, basic design is performed for the CESA-I using the software tool of THERMOFLEX program. Based on the results, It is at lowed to use the program to investigate detail performance of each units of the STPPS by varying the operating conditions.

  • PDF

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

Experimental Verification for a Spiral-Jacketed Storage Tank Applied to Solar Thermal System (태양열 시스템에 적용된 나선재킷형 축열조의 실증실험)

  • Kim Jin Hong;Choi Bong Su;Hong Hiki;Kim Yong-Shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.341-346
    • /
    • 2005
  • The simplification of solar thermal systems reduces the possibility of operating trouble and lowers the cost of the initial investment and maintenance. This also leads to increased competitiveness in the energy market. We proposed a spiral-jacketed storage tank that functions both as a heat exchanger and expansion tank, which removes the secondary piping and markedly simplifies the entire system. The new storage tank was designed and manufactured to maintain the same performance as the conventional system and the exiting system was remodelled by adopting the newly proposed storage tank. This experiment was conducted under real conditions over a period of several months. The retrofitted system with the spiral-jacketed storage tank showed good performance that is on a similar level as the previous system having a typical storage tank and heat exchanger.

A System Development of Thermal Energy Storage at High Temperatures (고온 축열 시스템의 개발에 관한 연구)

  • Hong, Seong-Ahn;Park, Won-Hoon;Choe, Hyung-Joon
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 1988
  • Heat transfer phenomena in a high-temperature heat storage unit were investigated using molten salts. Carbonate salt, an equimolar mixture of $Li_2CO_3$ and $K_2CO_3$, which melts at $505^{\circ}C$ with a latent heat of 82 cal/g, was selected as the most promising latent heat storage material based on its low cost and excellent thermophysical properties at moderately high temperatures. It was also found that nitrate salts were good candidates of sensible heat storage materials. For the carbonate salt to be utilized commercially, however, several means of enhancing thermal recovery must be explored by promoting heat conduction through the solid salt formed during the heat discharge period. These would be achieved by the additions of aluminum screens and wool, and stainless fins. Finally, experimental results of moving boundary of phase change were well compared with predictied values obtained from the approximate solution.

  • PDF

Growth of Ice Crystal with Concentration of Surfactant in Water Solution (계면활성제 농도가 빙결정의 입자크기에 미치는 영향)

  • ;稻葉英男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.240-247
    • /
    • 2002
  • Recently, a thermal energy storage system has been developed actively fur the purpose of saving energy and reducing the peak electrical demand. Especially, ice slurry is a promising working fluid for low temperature energy storage systems. A flow of ice crystals has a large cooling capacity as a result of the involvement of latent heat. However, there are still problems related to the recrystallization of ice crystals for realizing long term storage and long distance transportation. To find improvements fur this, a method for the creation of ice crystals resistant to recrystallization has been proposed and researched by the use of an antifreeze protein (AFP) solution etc. In the present study, it has been investigated the growth of ice crystal in several kinds of water solution added non-ionic surfactant. The results shows that size of ice crystal was smaller with increasing in added surfactant. And ice crystal was not increased with added surfactant.

Status of Underground Thermal Energy Storage as Shallow Geothermal Energy (천부 지열에너지로서의 지하 열에너지 저장 기술 동향)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.197-205
    • /
    • 2010
  • Recently abrupt climate changes have been occurred in global and regional scales and $CO_2$ reduction technologies became an important solution for global warming. As a method of the solution shallow underground thermal energy storage (UTES) has been applied as a reliable technology in most countries developing renewable energy. The geothermal energy system using thermal source of soil, rock, and ground water in aquifer or cavern located in shallow ground is designed based on the concept of thermal energy recovery and storage. UTES technology of Korea is in early stage and consistent researches are demanded to develop environmental friendly, economical and efficient UTES systems. Aquifers in Korea are suitable for various type of ground water source heat pump system. However due to poor understanding and regulations on various UTES high efficient geothermal systems have not been developed. Therefore simple closed U-tube type geothermal heat pump systems account for more than 90% of the total geothermal system installation in Korea. To prevent becoming wide-spread of inefficient systems, UTES systems considering to the hydrogeothemal properties of the ground should be developed and installed. Also international collaboration is necessary, and continuous UTES researches can improve the efficiency of shallow geothermal systems.