• 제목/요약/키워드: Thermal decomposition of hydrate

검색결과 12건 처리시간 0.022초

복합 황산염 수화물의 열분해에 의한 Mg-Al 스피넬의 생성반응 (Reaction Processes of the Formation of Mg-Al Spinel by a Thermal Decomposition of a Mixed Sulfate Hydrate)

  • 박홍채;오기동
    • 한국세라믹학회지
    • /
    • 제23권6호
    • /
    • pp.71-75
    • /
    • 1986
  • The forming reaction processes of magnesium aluminate spinel by a thermal decomposition of sulfate hydrate were studied with DTA, TG. SEM and X-ray powder diffraction methods. The hydrous salt composed of the mixture of the two compounds of $MgSO_4$ $6H_2O$ and ${AL_2}({SO_4})_17H_2O_3$ in which both sulfates were crystalline. On heating the hydrous slat the crystalline magnesium and aluminum sulfate anhydride to amorphous alumina magnesium sulfate anhydride decomposed to amorphous magnesia and these amorphous oxides reacted completely each other to form a spinel at $1000^{\circ}C$ The apparent activation energy of forming reaction of spinel was 36.5 kcal/mole($900^{\circ}C$~$1000^{\circ}C$) The crystallite size of spinel obtained at $1000^{\circ}C$ after 1 h was 380$\AA$.

  • PDF

수화물 소성에 의한 고순도 다공성 CaO·Al2O3 클링커의 합성 (Synthesis of Pure and Porous CaO·Al2O3 Clinker by Burning of Hydrates)

  • 김두혁;송태웅
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.401-406
    • /
    • 2010
  • For the lower-temperature preparation of calcium monoaluminate(CA, C:CaO, A:$Al_2O_3$) clinker which is hard to synthesize purely within its melting point, an equimolar hydrate was obtained and then used as a starting raw material of clinker burning. The hydrate was prepared from a mixture of waste oyster shell and industrial aluminium hydroxide by heating to $1200^{\circ}C$, grinding and mixing with water. The hydrate was composed of amorphous aluminium hydroxide and $C_3AH_6$(H:$H_2O$) formed by resolution-precipitation mechanism of the system C-A-H. By heating the hydrate, nearly pure and porous calcium monoaluminate clinker was formed at $1400^{\circ}C$ which is fairly lower temperature than that of its melting point. The formation of calcium monoaluminate was performed mainly by the reaction between amorphous alumina and $C_{12}A_7$ caused by the decomposition of $C_3AH_6$. The immediate and earlier formation of $C_{12}A_7$ seemed to be accelerated by not only high surface area and instability of the thermally decomposed hydrate but also the catalytic effect of water decomposed from the hydrate. The final calcium monoaluminate clinker was very porous because of the influence of highly porous shape of the thermally decomposed hydrate.

Mg-Al 복합 황산염 수화물의 열분해 속도 (Kinetics of the Thermal Decomposition of Mg-Al Sulfate Hydrate)

  • 박홍채;오기동
    • 한국세라믹학회지
    • /
    • 제24권5호
    • /
    • pp.417-422
    • /
    • 1987
  • Kinetic studies were made on the thermal decomposition of hydrated magnesium aluminum double sulfate by a nonisothermal TG method. Thermal analyses of the dehydration of tricosahydrate showed that the reaction proceeded via decahydrate to the anhydrous MgAl2(SO4)4 in the range 50$^{\circ}$to 400$^{\circ}C$. Decomposition of MgAl2(SO4)4 occurred as the two-step between 650$^{\circ}$ and 970$^{\circ}C$. Dehydration of MgAl2(SO4)4$.$23H2O and a 2D diffusion controlled with an activation energy of 16.6kcal/mole, respectively. MgAl2(SO4)4 fitted the contracting volume model with an activation energy of 10.5kcal/mole, and MgSO4 fitted a contracting area model with an activation of 4.5kcal/mole.

  • PDF

Synthesis of Non-hydrate Iron Oleate for Eco-friendly Production of Monodispersed Iron Oxide Nanoparticles

  • Kim, Do Kyung;Lee, Jae Won
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.625-634
    • /
    • 2018
  • In this work, we describe a novel and simple technique to produce non-hydrate surfactant complexes for the formation of highly crystalline fatty acid modified SPIONs by thermolysis of iron oleate (FeOl) complexes in a non-coordinating solvent. FeOl complexes were prepared by direct coordination of iron ions and carboxylic acid; thus, we could control the stoichiometric composition of the precursor by changing the molar ratio of fatty acid and metal ions. The discrete thermal behaviors and chemical coordination of the intermediate non-hydrated FeOl were studied by thermo-analytic techniques including differential scanning calorimetry, thermal gravimetric analysis, and Fourier transform infrared spectroscopy.

메탄하이드레이트 개발동향 (The Status of Methane Hydrate Development)

  • 김영인
    • 자원환경지질
    • /
    • 제46권1호
    • /
    • pp.71-84
    • /
    • 2013
  • 대부분의 GH는 전세계 해양퇴적물에서 대부분 산출되며 매장량은 $10^{13}{\sim}20{\times}10^{15}m^3$로 현재 세계 에너지 사용량을 기준으로 근 1,000년에 해당하는 양이다. MH는 전통석유가스자원를 대체할 미래 천연가스자원으로써의 잠재력이 있기 때문에 감압법, 화학첨가제 주입법, 열자극법, $CO_2$-메탄 치환법 등 채굴기술개발이 필요하다. 우리나라의 경우 2014년까지는 시험생산이 가능할 것으로 기대되고 있다. 이를 위하여 생산방법을 비교하고 GH의 분해에 따르는 반응이 복잡하기 때문에 이러한 현상을 예측하는 기술과 효과적이고 환경 친화적인 가스를 생산할 수 있는 기술을 개발하는 것이다.

Iron계 금속 촉매가 ABS의 열분해 거동에 미치는 영향에 관한 연구 (Study on the Effect of Iron-based Metal Catalysts on the Thermal Decomposition Behavior of ABS)

  • 장준원;김진환;배진영
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.496-501
    • /
    • 2005
  • Iron계 금속 촉매의 존재 하에서 ABS의 열분해 거동을 TGA (Thermogravimetric Analysis)를 통해서 조사하였다. Iron계 금속 촉매(ferric nitrate nonahydrate, ammonium ferric sulfate dodecahydrate, iron sulfate hydrate, ammonium ferric oxalate, iron(II) acetate, iron(II) acetylacetonate 및 ferric chloride)는 ABS의 열분해 과정에서 화학반응을 야기하여, 질소분위기에서 촤(char)형성이 관찰되었으며, $600^{\circ}C$에서 3~23 wt%의 비휘발성 촤를 형성하였다. 이와 같은 질소분위기에서의 ABS의 촤 생성은 iron계 금속 촉매의 가교효과(crosslinking effect)로 추정된다. 한편, 공기분위기에서는 생성된 촤가 고온 산화반응에 의해서 열분해되었다.

고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가 (Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature)

  • 송훈;김영호;김완기;소형석
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.

Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성 (High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin)

  • 송훈;추용식;이종규;도정윤
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

수화물 소성법에 의한 알루민산삼칼슘 클링커의 합성에 관한 연구 (Study on Synthesis of Tricalciumaluminate Clinker by Hydrate-burning Method)

  • 기태경;송태웅
    • 한국세라믹학회지
    • /
    • 제44권9호
    • /
    • pp.517-523
    • /
    • 2007
  • For the preparation of tricalciumaluminate $(C_3A)$ clinker, in traditional clinkering method using oxides and carbonates as a raw material, uneconomical repetition of burning have been necessary to avoid the melting of clinker by eutectic reaction in the system $CaO-Al_2O_3$. In this study, special starting raw materials for the clinker burning were prepared from a mixture of oyster shell and aluminium hydroxide by heating to $1100^{\circ}C$ and hydrating at $30^{\circ}C$. The starting raw materials, hardened body with weak hydraulic strength, were mainly composed of $C_3AH_6$ formed by resolution-precipitation mechanism of the system $CaO-Al_2O_3-H_2O$. By heating them, relatively pure $C_3A$ clinker could be obtained by one-time burning at the fairly lower temperature than that of conventional method. The easier formation of $C_3A$ clinker seemed to be caused by higher compositional homogeneity and stoichiometry of the starting materials, high surface area and crystallographic instability of the thermally decomposed products, and the catalytic effect of decomposed moisture on the early-stage crystallization of calciumaluminates. The basic hydration behavior of the clinker was also confirmed.

초음파분무열분해법에 의한 나노 텅스텐 분말의 형성 및 특성에 관하여 (The Characteristics and Formation of Tungsten Nano-Powder by Ultrasonic Spray Pyrolysis Method)

  • 이호진;윤중현;최진일
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.174-179
    • /
    • 2008
  • Nanosize tungsten powder was synthesized by ultrasonic spray pyrolysis method through a solution containing ammonium metatungstate hydrate $[(NH_4)_6W_{12}O_{39}{\cdot}H_2O]$ and reduction treatment. It was expected the improvement of mechanical properties due to increasing surface free energy and surface activity. Starting solutions with each concentration, reaction temperature and reduction treatment were significantly influenced on the formation of tungsten size and phase. It was found that particle size was decreased with concentration of starting solution and surface tension were decreased. The particle size was increased at thermal decomposition temperature above $600^{\circ}C$ by neck growth of interparticles. Tungsten particles were formed by reduction reaction in atmosphere of hydrogen gas at the temperature above $700^{\circ}C$.