Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.6.07

Synthesis of Non-hydrate Iron Oleate for Eco-friendly Production of Monodispersed Iron Oxide Nanoparticles  

Kim, Do Kyung (Department of Anatomy, College of Medicine, Konyang University)
Lee, Jae Won (Department of Material Science and Engineering, College of Aviation, Jungwon University)
Publication Information
Abstract
In this work, we describe a novel and simple technique to produce non-hydrate surfactant complexes for the formation of highly crystalline fatty acid modified SPIONs by thermolysis of iron oleate (FeOl) complexes in a non-coordinating solvent. FeOl complexes were prepared by direct coordination of iron ions and carboxylic acid; thus, we could control the stoichiometric composition of the precursor by changing the molar ratio of fatty acid and metal ions. The discrete thermal behaviors and chemical coordination of the intermediate non-hydrated FeOl were studied by thermo-analytic techniques including differential scanning calorimetry, thermal gravimetric analysis, and Fourier transform infrared spectroscopy.
Keywords
Oleic acid; Iron oxide; Nanoparticles; Thermal decomposition; Superparamagnetic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Zeng, P. M. Rice, S. X. Wang, and S. Sun, "Shape-Controlled Synthesis and Shape-Controlled Texture of $MnFe_2O_4$ Nanoparticles," J. Am. Chem. Soc., 126 11458-59 (2004).   DOI
2 Y. Hou, Z. Xu, and S. Sun, "Controlled Synthesis and Chemical Conversions of FeO Nanoparticles," Angew. Chem. Int. Ed., 46 6329-32 (2007).   DOI
3 N. Shukla, C. Liu, P. M. Jones, and D. Weller, "FTIR Study of Surfactant Bonding to FePt Nanoparticles," J. Magn. Magn. Mater., 266 [1-2] 178-84 (2003).   DOI
4 A. G. Roca, M. P. Morales, K. O'Grady, and C. J. Serna, "Structural and Magnetic Properties of Uniform Magnetite Nanoparticles Prepared by High Temperature Decomposition of Organic Precursors," Nanotechnology, 17 [11] 2783-88 (2006).   DOI
5 S. V. Mahajan and J. H. Dikerson, "Synthesis of Monodisperse sub-3 nm $RE_2O_3$ and $Gd_2O_3$: $RE^{3+}$ Nanocrystals," Nanotechnology, 18 [32] 325605-11 (2007).   DOI
6 M. Klokkenburg, J. Hilhost, and B. H. Erne, "Surface Analysis of Magnetite Nanoparticles in Cyclohexane Solutions of Oleic Acid and Oleylamine," Vib. Spectrosc., 43 [1] 243-48 (2007).   DOI
7 K. R. Rogan, "Adsorption of Oleic Acid and Triolein onto Various Minerals and Surface Treated Minerals," Colloid Polym. Sci., 272 [1] 82-98 (1994).   DOI
8 T. Yoshida, Y. Yamamoto, and K. Taga, "Effect of Water-Soluble Alcohol on the Surface Conductance of Lipid Monolayers: Bimodal Action," J. Phys. Chem. B, 107 3196-98 (2003).   DOI
9 R. Zbroil, A. Bakandritsos, M. Mashlan, V. Tzitzios, P. Dallas, C. Trapalis, and D. Petridis, "One-Step Solid State Synthesis of Capped Gamma-$Fe_2O_3$ Nanocrystallites," Nanotechnology, 19 [9] 095602-10 (2008).   DOI
10 K. O'Grady and A. Bradbury, "Particle Size Analysis in Ferrofluid," J. Magn. Magn. Mater., 39 91-4 (1983).   DOI
11 N. Shukla, C. Liu, P. M. Jones, and D. Weller, "FTIR Study of Surfactant Bonding to FePt Nanoparticles," J. Magn. Magn. Mater., 266 178-84 (2003).   DOI
12 L. Zhang, R. He, and H.-C. Gu, "Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles," Appl. Surf. Sci., 253 2611-17 (2006).   DOI
13 L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007).   DOI
14 M. M. Mossoba, M. P. Yurawecz, P. Delmonte, and J. K. G. Kramer, "Overview of Infrared Methodologies for trans Fat Determination," J. AOAC. Int., 87 [2] 540-44 (2004).
15 T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, "Synthesis of Highly Crystallline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process," J. Am. Chem. Soc., 123 12798-801 (2001).   DOI
16 L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007).   DOI
17 S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, and T. Hyeon, "Kinetics of Monodispersed Iron Oxide Nanocrystals Formation by "Heatingup" Process," J. Am. Chem. Soc., 129 [41] 12571-84 (2007).   DOI
18 J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, "Ultra-Large-Scale Synthesis of Monodisperse Nanocrystals," Nat. Mater., 3 891-95 (2004).   DOI
19 A. Shavel, B. Rodriuez-Gonzalez, J. Pacifico, M. Spavosa, M. Farle, and L. M. Liz-Marzan, "Shape Control in Iron Oxide Nanocrystals Synthesis, Induced by Trioctylammonium Ions," Chem. Mater., 21 1326-32 (2009).   DOI
20 Y.-Q. Ke, C.-C. Hu, X.-D. Jiang, Z.-J. Yang, H.-W. Zhang, H.-M. Ji, L.-Y. Zhou, Y.-Q. Cai, L.-S. Qin, and R.-X. Xu, "In vivo Magnetic Resonance Tracking of Feridex-Labeled Bone Marrow-Derived Neural Stem Cells after Autologous Transplantation in Rhesus Monkey," J. Neurosci. Methods, 179 [1] 45-50 (2009).   DOI
21 P.-E. Le Renard, O. Jordan, A. Faes, A. Petri-Fink, H. Hofmann, D. Rüfenacht, F. Bosman, F. Buchegger, and E. Doelker, "The in vivo Performance of Magnetic Particle- Loaded Injectable, in situ Gelling, Carriers for the Delivery of Local Hyperthermia," Biomaterials, 31 [4] 691-705 (2010).   DOI
22 S. Kulkarni, B. Ramaswamy, E. Horton, S. Gangapuram, A. Nacev, D. Depireux, M. Shimoji, and B. Shapiro, "Quantifying the Motion of Magnetic Particles in Excised Tissue: Effect of Particle Properties and Applied Magnetic Field," J. Magn. Magn. Mater., 393 243-52 (2015).   DOI
23 M. Lanzon and P. A. Garcia-Ruiz, "Effectiveness and Durability Evaluation of Rendering Mortars Made with Metallic Soaps and Powered Silicons," Constr. Build. Mater., 22 [12] 2308-15 (2008).   DOI
24 C. Oka, K. Ushimaru, N. Horiishi, T. Tsuge, and Y. Kitamoto, "Core-Shell Composite Particles Composed of Biodegradable Polymer Particles and Magnetic Iron Oxide Nanoparticles for Targeted Drug Delivery," J. Magn. Magn. Mater., 381 278-84 (2015).   DOI
25 S. Meier, G. Pütz, U. Massing, C. E. Hagemeyer, D. von Elverfeldt, M. Meissner, K. Ardipradja, S. Barnert, K. Peter, C. Bode, R. Schubert, and C. von zur Muhlen, "Immuno-Magnetoliposomes Targeting Activated Platelets as a Potentially Human-Compatible MRI Contrast Agent for Targeting Atherothrombosis," Biomaterials, 53 137-48 (2015).   DOI
26 N. Sattarahmady, T. Zare, A. R. Mehdizadeh, N. Azarpira, M. Heidari, M. Lotfi, and H. Heli, "Dextrin-Coated Zinc Substituted Cobalt-Ferrite Nanoparticles as an MRI Contrast Agent: In vitro and in vivo Imaging Studies," Colloids Surf., B, 129 15-20 (2015).   DOI
27 G. Mehrnaz, "Synthesis of Magnetic Nanoparticles of Cobalt and Nickel Modified Iron Oxides by Thermal Decomposition of Metal-Carbonyl for Biomedical and Biochemical Applications," Clin. Biochem., 44 [13] S213 (2011).
28 R. S. Sapieszko and E. Matijevic, "Preparation of Well- Defined Colloidal Particles by Thermal Decomposition of Metal Chelates. I. Iron Oxides," J. Colloid Interface Sci., 74 [2] 405-22 (1980).   DOI
29 F. Chen, S. Xie, J. Zhang, and R. Liu, "Synthesis of Spherical $Fe_3O_4$ Magnetic Nanoparticles by Co-Precipitation in Choline Chloride/Urea Deep Eutectic Solvent," Mater. Lett., 112 177-79 (2013).   DOI
30 H. Gu, X. Tang, R. Y. Hong, W. G. Feng, H. D. Xie, D. X. Chen, and D. Badami, "Ubbelohde Viscometer Measurement of Water-Based $Fe_3O_4$ Magnetic Fluid Prepared by Coprecipitation," J. Magn. Magn. Mater., 348 88-92 (2013).   DOI
31 J. Liang, N. Du, S. Song, and W. Hou, "Magnetic Demulsification of Diluted Crude Oil-in-Water Nanoemulsions Using Oleic Acid-Coated Magnetite Nanoparticles," Colloids Surf., A, 466 197-202 (2015).   DOI
32 V. de Castro, G. Benito, S. Hurst, C. J. Serna, M. P. Morales, and S. Veintemillas-Verdaguer, "One Step Production of Magnetic Nanoparticle Films by Laser Pyrolysis Inside a Chemical Vapour Deposition Reactor," Thin Solid Films, 519 [22] 7677-82 (2011).   DOI
33 E. Baeuerlein and D. Schueler, "Biomineralisation: Iron Transport and Magnetite Crystal Formation of Magnetospirillum Gryphiswaldense," J. Inorg. Biochem., 59 [2-3] 107 (1995).   DOI