• Title/Summary/Keyword: Thermal decomposition method

Search Result 328, Processing Time 0.029 seconds

Electrical Properties of Nickel Polycide Gate (니켈 폴리사이드 게이트의 전기적 특성)

  • 정연실;김시중;김주연;배규식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.449-452
    • /
    • 1999
  • NiSi were formed from either Ni monolayer or Ni/Ti bilayer and the SADS method was applied to fabricated PMOSFET with Ni-polycide gate electrodes. PMOSFET made from Ni monolayer showed thermal stability unto 300~40$0^{\circ}C$ for 600sec., and excellent C-V characteristics for long time of drive-in anneal than PMOSFET made from Ni/Ti bilayer. This was attributed to easier decomposition and subsequent Ni diffusion to SiO$_2$ layer, probably due to the presence of Ti unreducing process

  • PDF

Kinetics of Pyrolysis Degradation of Cured Phenol Resin (SC-1008) (I). (경화된 페놀 수지 (SC-1008)의 열분해 반응에 관한 연구(I).)

  • 김연철;강희철;예병한;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.137-144
    • /
    • 1996
  • The kinetic coefficients far decomposition of the cured phenol resin (SC-1008) using a modified Arrhenius relationship have been determined from thermogavimetric analyses (TGA). The kinetic parameters were determined by multiple heating rate technique developed by Freideman and Henderson. Weight loss (decomposition) and weight loss rate (decomposition rate)were measured and recorded for three heating rates; $5^{\circ}C$/min ,$10^{\circ}C$/min, and $20^{\circ}C$/min. Relatively good agreement was obtained between measured and calculated decomposition as a function of temperature. By separating the reaction, the reaction order and pre exponential factor become empirical parameters which provide a "best fit" of the data. However, this method yields an extremely accurate reproduction of the thermograms over a wide range of heating rates. This is the desired result for kinetic parameters used in thermal models.al models.

  • PDF

A Study on Thermal Characteristic Carbon and other Elements in Suspended Particulates (대기 입자상물질중 탄소(C)등의 열적특성에 관한 조사연구)

  • 황경철
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.31-39
    • /
    • 1990
  • An analytical method for particulate carbon and other elements by using elemental analyzer was investigated. Carbon, hydrogen, and nitrogen was determined as CO$_{2}$, H$_{2}$, and N$_{2}$, respectively. Organic was determined after scparation from elemental carbon(Cae) by volatilization and thermal decomposition in a heated helium flow. With organic materials examined in this reprot, more than 90% of carbon was detected as above 600$^{\circ}$C. But it is considered that a few percents of some compounds were charred above 550$^{\circ}$C. A small amount of Cae was oxidized in the inert atmosphere above 850$^{\circ}$C, but the reason was not explained clearly. Based on the thermal chracteristics of Cao it was found that the optimum temperature of heating in the helium flow of an elemental analyzer for Cao analysis is 630$^{\circ}$C. Carbon in a sample after removing Cao was assumed as Cae and the gramatom ratio of hydrogen to carbon in the sample was 0.4 and less. Rescovery of nitrogen derived from some ammonium salts and nitrates was 100% by two-step measurement with elemental analyzer. By the analytical method investigated in this report, carbon and other elements in suspended particulates(S.P) collected at an urban area in Seoul were measured. There was a good correlation between total nitrogen in SP measured by elemental analyzer and nitrogen estimated form ammonium ions and nitrate ions in SP. The nitrogen from these ions accounts for 80% of the total nitrogen. It is further suggested that the residue(20%) of the total nitrogen is attributed to the other nitrogeneous compounds.

  • PDF

Effect of Particle Size on Thermal Property of RDX and HMX (HMX와 RDX의 열적 특성에 미치는 입자 크기의 영향)

  • Kim, Seung Hee
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.352-357
    • /
    • 2012
  • Techniques of thermal analyses such as DSC and TGA have been used in the study of activation energy (Ea) and frequency factor (A) depending on the particle size of RDX and HMX. Activation energy and frequency factor were calculated by Kissinger's method and Vyazovkin's method. As the particle size of RDX increased, TGA showed activation energy increased, but DSC didn't show. However, In case of HMX, as the particle size increased, both of DSC and TGA showed increase in activation energy. Moreover, Vyazovkin's method can obtain activation energy and mechanism according to decomposition of RDX and HMX.

A Study on the Ignition Behaviors of Textiles according to Permeation Amount of Oils and Aeration (유지류의 침윤량과 공기주입에 따른 면화류의 발화거동에 관한 연구)

  • 오치훈;이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • We had investigated thermal and ignition behaviors of textiles. Decomposition of textiles with temperature was investigated using a DSC and the weight loss according to temperature using a TGA in order to find the thermal hazard of textiles, and the ignition behaviors of textiles according to species and permeation amount of oil. In addition, ignition behaviors of those permeated into oils indicating different iodine value and of those with arid without air in reaction vessel of measuring equipment were studied with constant temperature method among ignition temperature measuring methods. As results, the range of decomposition temperature of synthetic fiber was slightly broad compared with that of natural fiber, pure cotton. Besides, the initiation temperature of heat generation of both samples riced in the case of no air injection in the reaction vessel. On the other hand, in the case of air injection that was lowered according to the increase in permeative amount of oils and fats and decreased quickly as sample was permeated into drying oil.

  • PDF

A Study on Effects of Vulcanization Systems on Cross-linking and Degradation Reactions of NR/CR Blends Using Dynamic DSC and TGA (Dynamic DSC와 TGA를 이용한 NR/CR 고무블렌드의 가황시스템이 가교 및 열화반응에 미치는 영향 연구)

  • Min, Byung-kwon;Park, DongRyul;Ahn, WonSool
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • Effects of variations sulfur/accelerator ratio on cross-linking and thermal degradation behavior of NR/CR rubber compounds were studied using both dynamic DSC and non-isothermal TGA. DSC thermograms of the given samples were obtained with several different heating rates, and after cross-liked in DSC, TGA thermograms with the same samples also obtained. Kissinger analysis was applied to assess the activation energies for the cross-linking and thermal decomposition processes. Results showed that the formation and thermal decomposition reaction of the samples occurred in the overall temperature range of $120{\sim}180^{\circ}C$ and $350{\sim}450^{\circ}C$, respectively, exhibiting that data could be well-fittable by Kissinger method. Furthermore, formation activation energy by DSC was estimated as $83.0{\pm}5.0kJ/mol$, which was much smaller than that of degradation by TGA, $147.0{\pm}2.0kJ/mol$. From these results, it was considered that, although variations of sulfur/accelerator ratio in the present experiments affected little on the formation mechanism and/or thermal degradation, they could play roles as the catalysts which lower the activation energy of formation. Because of stabilization after formation reaction, however, they have no more effects on the lowering the activation energy, showing higher values when decomposition, caused by main-chain scissions.

Synthesis of $\beta$-Alumina By Oxalate Coprecipitation Method and Its Crystallization Behavior (Oxalate 공침법에 의한 $\beta$-Alumina 합성과 결정화 거동)

  • 박용민;양유철;김형욱;박성수;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.455-461
    • /
    • 1995
  • To investigate the synthesis of $\beta$-Al2O3 and its crystallization behavior by oxalate coprecipitation method, the optimum pH range for oxalate coprecipitates has been theoretically calculated from the solubility products and the equilibrium constans of each metal ionic species and their solubility diagram wa obtained. The optimum pH range for oxalate coprecipitates at room temperature was estimated as <4. In experiment, we found that the optimum condition for oxalate coprecipitates was pH<1, which was not doped with pH controller. The Na+ ions were easily exchanged for the NH4+ ions of NH4OH which was used as pH controller, and those NH4+ ions were supposed to affect the crystallization behavior of $\beta$-Al2O3. The thermal decomposition of all complexes was almost complete below 40$0^{\circ}C$. The primary product of the decomposition process was m-Al2O3, which transformed to $\beta$"- or $\beta$-Al2O3 at temperature higher than 100$0^{\circ}C$. We found that the powder prepared at 120$0^{\circ}C$ had only $\beta$"- and $\beta$-Al2O3.EX>-Al2O3.

  • PDF

A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Butyl Methacrylate (부틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성)

  • Choi, Jae-Wook;Seul, Soo-Duck;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.45-51
    • /
    • 2002
  • This study is the series of photopolymerization on alkyl methacrylate(AMA) to continue further research. The objective of this work is to investigate the environmental fraternitive characteristics of photopolymerization kinetics on n-Buthyl methacrylate(BMA) and comparing the decomposition behavior to other AMA. The experiment was done in aqueous solution under the influence of photo-initiator concentration$(0.05{\sim}0.25mol/l)$, light intensity$(5000{\sim}9000{\mu}J/cm^{2})$ and monomer concentration$(2.0{\sim}6.0mol/l)$. n-BMA was polymerized to high conversion ratio using hydrogen $peroxide(H_{2}O_{2})$, and the kinetics model we have obtained is as follows. $R_{p}=K_{p}[S]^{0.24}[M]^{0.33}[L]^{153}exp^{(27.19/RT)}$ The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it was 27.5Kcal/mol.

A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Methyl Methacrylate (메틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성)

  • 주영배;이내우;최재욱;강돈오;설수덕
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.68-75
    • /
    • 2001
  • Photopolymerization, the utilization of electromagnetic radiation(or light) as the energy source for polymerization of functional monomers, oligomers is the basis of important commercial processes with broad applicability, including photoimaging and RV curing of coatings and inks. The objective of this study is to investigate the characteristics of environmental fraternitive photopolymerization of methyl methacrylate(MMA). This work is the first step to continue further research about alkyl methacrylate. The experiment was done in aqueous solution under the influence of photo-initiator concentration(0.05-0.25mol/l), light intensity (5000-9000 ${\mu}J/cm^2$) and monomer concentration(2-6mol/l). Methyl methacrylate was polymerized to high conversion ratio using hydrogen peroxide($H_2O_2$) and the kinetics model we have obtained is as follows. $R_p=k_p[S]^{0.41}[M]^{0.62}[L]^{2.45} exp(53.64/RT$). The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it res 45.4Kca1/mol.

  • PDF

Thermal Decomposition Kinetics of Copolymers Derived from p-dioxanone, L-lactide and Poly(ethylene glycol)

  • Bhattarai Narayan;Khil Myung Seob;Oh Seung Jin;Kim Hak Yong;Kim Kwan Woo
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.289-296
    • /
    • 2004
  • The kinetic parameters, including the activation energy E, the reaction order n, and the pre-exponential factor Z, of the degradation of the copolymers based on the poly(L-lactide) (PLLA) or poly(p-dioxanone-co-L-lactide) (PDO/PLLA) and diol-terminated poly(ethylene glycol) (PEG) segments have been evaluated by the single heating methods of Friedman and Freeman-Carroll. The experimental results showed that copolymers exhibited two degradation steps under nitrogen that can be ascribed to PLLA or PDO/PLLA and PEG segments, respectively. However, copolymers exhibited almost single degradation step in air. Although the values of initial decomposition temperature were scattered, copolymers showed the lower maximum weight loss rate and degradation-activation energy in air than in nitrogen whereas the higher value of temperature at the maximum rate of weight loss was observed in air.