• Title/Summary/Keyword: Thermal damage

Search Result 920, Processing Time 0.028 seconds

A Study on the Damage by Burning Characteristics of Insulating Materials of RCD (누전차단기 절연재료의 소손 특성에 관한 연구)

  • Lee, Chun-Ha;Kim, Shi-Kuk;Ok, Kyung-Jae;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-66
    • /
    • 2009
  • In this study, we study the damage by burning characteristics of insulating material of RCD (Residual Current Device) used in Korea. The insulating materials of RCD manufactured by three manufacturers are used as the sample. We compare and analyze the thermal decomposition characteristics, combustion characteristics and tracking characteristics of samples. The TGA and Mass Loss Calorimeter meeting the requirements for the ISO5660 (Fire tests-Reaction to Fire, part 1) are used for analyzing the thermal decomposition characteristics and combustion characteristics respectively. In addition, the tracking characteristics are analyzed according to standard of KSC IEC 60112 known as the test used for measuring the resistance tracking and comparison tracking indexes. The study results show that the resistance tracking property of insulating material provided by A Company is highest. Also, the test results show that the resistance tracking property of insulating material provided by B Company is lowest. However, the thermal stability of insulating material provided by this company is excellent at high temperature of above $350^{\circ}C$. In addition, the test results show that the thermal stability of insulating material provided by C Company is highest at temperature of below $400^{\circ}C$.

Electromigratoin and thermal fatigue in Cu mentallization for ULSI (고집적용 구리배선의 electromigration 및 thermal fatigue 연구)

  • Kim Y.H.;Park Y.B;Monig R.;Volkert C.A.;Joo Y.C
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.53-58
    • /
    • 2005
  • We researched damage formation and failure mechanism under DC(direct current) and AC(alternative current) in order to estimate reliability of Cu interconnects in ULSI. Higher current density and temperature induces more short TTF(time to failure) during interconnects carry DC. Measurement reveals that Cu electromigration has activation energy of 0.96eV and current density exponent value of 4. Thermal fatigue is occurred under DC, and higher frequency and ${\Delta}$T value gives more severe damage during interconnects carry AC Through failure morphology analysis with respect to texture, we observed that damages had grown widely and facetted grains had appeared in (100)grain but damages in (111) had grown thickness direction of line and had induced a failure rapidly.

  • PDF

A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy

  • Lee, Eun Jung;Kalia, Suneil K.;Hong, Seok Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.353-360
    • /
    • 2019
  • Epilepsy surgery that eliminates the epileptogenic focus or disconnects the epileptic network has the potential to significantly improve seizure control in patients with medically intractable epilepsy. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has been an established option for epilepsy surgery since the US Food and Drug Administration cleared the use of MRgLITT in neurosurgery in 2007. MRgLITT is an ablative stereotactic procedure utilizing heat that is converted from laser energy, and the temperature of the tissue is monitored in real-time by MR thermography. Real-time quantitative thermal monitoring enables titration of laser energy for cellular injury, and it also estimates the extent of tissue damage. MRgLITT is applicable for lesion ablation in cases that the epileptogenic foci are localized and/or deep-seated such as in the mesial temporal lobe epilepsy and hypothalamic hamartoma. Seizure-free outcomes after MRgLITT are comparable to those of open surgery in well-selected patients such as those with mesial temporal sclerosis. Particularly in patients with hypothalamic hamartoma. In addition, MRgLITT can also be applied to ablate multiple discrete lesions of focal cortical dysplasia and tuberous sclerosis complex without the need for multiple craniotomies, as well as disconnection surgery such as corpus callosotomy. Careful planning of the target, the optimal trajectory of the laser probe, and the appropriate parameters for energy delivery are paramount to improve the seizure outcome and to reduce the complication caused by the thermal damage to the surrounding critical structures.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

A Study on the Economic Evaluation of Thermal Spray Methods for the Corrosion Protection of Steel (금속용사 방식공법의 경제성 평가에 관한 연구)

  • Jung Sung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.13-16
    • /
    • 2005
  • Generally, as corrosive protection processing of a steel structure, zinc galvanizing and heavy duty coating paint are applied. However, zinc galvanizing has the difficulty of restriction of a size, or on-site construction. Moreover, heavy duty coating paint has a problem with many administrative and maintenance expenses with short problem of adhesion, corrosion generating of a damage portion, and maintenance management cycle. In this study, a salt water spray test, CASS test, and the electrochemistry examination were carried out for the thermal metal spray method of construction for corrosive protection performance evaluation. Moreover, the corrosive protection life of a thermal metal spray method of construction was quantitatively calculated on the basis of this experiment. in consideration of LCC, the economical efficiency of a general corrosive protection method of construction and a thermal metal corrosive protection method of construction was compared. Consequently, although initial construction expense was estimated 16 to $30\%$ high, as for a thermal metal spray method of construction, it turns out that the administrative and maintenance expenses for 100 years became cheap 9.3 to 13 or more times.

  • PDF

Evaluation of High Cycle Thermal Fatigue on Mixing Tee in Nuclear Power Plant (원전 Mixing Tee에서의 고주기 열피로 평가)

  • Lee, Sun Ki
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • In nuclear power plants, there is a risk of thermal fatigue in equipment and piping affecting system soundness because the temperature change of the system accompanies in every operation and shutdown. Therefore, in order to prevent the excess of the fatigue limit during the lifetime of plants, the fatigue limit of each piping material is determined in the designing stage. However, there are many cases where equipment or piping is locally subjected to thermal fatigue that is not considered in the design, resulting in damage to the equipment and piping, and failure during operation. Currently, local thermal fatigue generation mechanisms that are not taken into account in the design stage are gradually being identified. In this paper, the effects of the fluid temperature fluctuations on the piping soundness due to the mixing of hot and cold water, one of the local thermal fatigue generating mechanisms, were evaluated.

Factors to Influence Thermal-Cycling Reliability of Passivation Layers in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 박막의 TC 신뢰성에 영향을 미치는 요인들)

  • Lee, Seong-Min;Lee, Seong-Ran
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.288-292
    • /
    • 2009
  • This article shows various factors that influence the thermal-cycling reliability of semiconductor devices utilizing the lead-on-chip (LOC) die attach technique. This work details how the modification of LOC package design as well as the back-grinding and dicing process of semiconductor wafers affect passivation reliability. This work shows that the design of an adhesion tape rather than a plastic package body can play a more important role in determining the passivation reliability. This is due to the fact that the thermal-expansion coefficient of the tape is larger than that of the plastic package body. Present tests also indicate that the ceramic fillers embedded in the plastic package body for mechanical strengthening are not helpful for the improvement of the passivation reliability. Even though the fillers can reduce the thermal-expansion of the plastic package body, microscopic examinations show that they can cause direct damage to the passivation layer. Furthermore, experimental results also illustrate that sawing-induced chipping resulting from the separation of a semiconductor wafer into individual devices might develop into passivation cracks during thermal-cycling. Thus, the proper design of the adhesion tape and the prevention of the sawing-induced chipping should be considered to enhance the passivation reliability in the semiconductor devices using the LOC die attach technique.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

A Comparative Study on Lightning Characteristics and Lightning Damage to Wind Turbines of Jeju and Gangwon Region (제주와 강원 지역의 낙뢰특성 및 풍력발전기의 낙뢰피해 비교 연구)

  • Yang, Dal-Seung;Kim, Kyoung-Bo;Ko, Kyung-Nam
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-143
    • /
    • 2014
  • An investigation on lightning characteristics and damage to wind turbines was performed on Jeju and Gangwon regions. The lightning data from January 2010 to September 2013 detected by IMPACT ESP were collected and analyzed in detail. Hangyeong and Seongsan wind farms of Jeju province and Taebaek, Changjuk, Taegisan and Gangwon wind farms of Gangwon province were selected for this study. Lightning rates and lightning damage events at the six wind farms were compared with each other. Lightning maps for the two regions were drawn using lightning frequency data. As a result, lightning frequency of Gangwon region was higher than that of Jeju region, while lightning strength of Gangwon was weaker than that of Jeju. Lightning rates were assessed to be good for all of the six wind farms. No lightning damage to wind turbines occurred at the two wind farms of Jeju, while some lightning damage to wind turbines took place at the four wind farms of Gangwon.