• 제목/요약/키워드: Thermal cycling test

검색결과 135건 처리시간 0.025초

로켓탄 추진기관 온도반복시험 균열 원인분석 (Analysis of the Causes of Cracks in Rocket Propellant in Thermal Cycling Test)

  • 박진만;박순우
    • 품질경영학회지
    • /
    • 제51권4호
    • /
    • pp.735-749
    • /
    • 2023
  • Purpose: The purpose of this study is to derive solutions and prevent similar cases from occurring by analyzing the causes of cracks found in temperature cycling tests of rocket motor. Methods: By combining the results of the current state confirmation test, non-destructive test, domestic and foreign rocket motor comparison test, cutting test, and adhesion test according to the number of times to apply mold release agent, a Cause and Effect Diagram analysis was performed to derive the cause of cracks. Results: Through this study, 26 factors that could cause cracking in rocket motors during temperature cycling tests were identified. Through various additional test results, a total of five causes were identified, including chemical and structural design of the joint between the propellant and stress relief insert, omission of procedure in the manufacturing procedures, natural aging due to temperature, and load accumulation due to temperature changes. The fundamental cause was confirmed to be insufficient consideration of the release properties of the propellant and stress relief insert. Conclusion: During the design process, it was confirmed that this could be solved by structurally or chemically designing the insert so that it does not combine with the propellant, or by applying a mold release agent during the manufacturing process.

플립 칩 BGA 솔더 접합부의 열사이클링 해석 (Thermal Cycling Analysis of Flip-Chip BGA Solder Joints)

  • 유정희;김경섭
    • 마이크로전자및패키징학회지
    • /
    • 제10권1호
    • /
    • pp.45-50
    • /
    • 2003
  • 시스템 보드에 플립 칩 BGA가 실장된 3차원 유한요소 해석 모델을 구성하여 열사이클시험 과정에서 발생되는 솔더 접합부의 피로수명을 예측하였다. 피로 모델은 Darveaux의 경험식에 기초하여 비선형 점소성 해석을 수행하였다. 해석은 4종류의 열사이클시험 조건과 패드구조, 솔더 볼의 조성과 크기의 변화에 따라 발생하는 크리프 수명을 평가하였다. 해석결과 $-65∼150^{\circ}C$의 열사이클시험 조건에서 가장 짧은 피로수명을 보였으며, $0∼100^{\circ}C$ 조건과 비교하면 약 3.5 배 정도 증가하였다. 동일한 시험조건에서 패드구조 변화에 따른 피로수명 차이는 SMD구조가 NSMD구조에 비해 약 5.7% 증가하였다 결과적으로 솔더 접합부에서 크리프 변형에너지 밀도가 높으면 피로수명은 짧아지는 것을 알 수 있었다

  • PDF

취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계 (Development of Reliability Design Technique and Life Prediction Model for Electronic Components)

  • 김일호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

PV 모듈에서 온도 영향에 의한 micro-crack 성장과 전기적 특성 분석 (The analysis of growth and electrical characteristics of micro-crack with thermal effect in PV module)

  • 송영훈;강기환;유권종;안형근;한득영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1318-1319
    • /
    • 2011
  • In this paper, we analyzed of growth and electrical characteristics of micro-cracks with thermal effect in PV module. The micro-cracks are increasing the breakage risk over the whole value chine from the wafer to the finished module, because the wafer or cell is exposed to mechanical stress. we experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. The first step, we made micro-cracks in PV module by mechanical load test according to IEC 61215. Next, PV modules applied the thermal cycling test, because microcracks accelerated aging by thermal cycling test. according to IEC61215. Before every test, we checked output and EL image of PV module.

  • PDF

Thermal cycling과 시효처리가 Glass-Ionomer 수복재의 인장강도에 미치는 영향 (EFFECT OF THERMAL CYCLING AND AGING ON THE TENSILE STRENGTH OF GLASS-IONOMER RESTORATIVE MATERIALS)

  • 백병주;김문현;이승영;이승익;김재곤
    • 대한소아치과학회지
    • /
    • 제26권4호
    • /
    • pp.677-687
    • /
    • 1999
  • 본 연구에서는 구강환경과 유사한 액상의 조건하에서의 온도변화가 광중합형 글래스아이오노머계 수복재의 인장강도에 미치는 영향을 평가하기 위해 대조군으로 2종의 재래형 glass ionomer를 선택하고 실험군으로 2종의 광중합형의 resin-modified glass ionomer와 2종의 polyacid-modified resin composite을 선택한 다음 수중에서의 thermal cycling과 시효처리를 행하였으며, 다음과 같은 결론을 얻었다. 1. 글래스아이오노머 수복재의 인장강도를 측정한 결과, polyacid-modified resin composite, resin-modified glass ionomer 그리고 재래형 glass ionomer 의 순으로 나타났다. 2. 인장강도는 30일간의 시효처리로 증가되는 경향을 보였다. 3. 재래형 glass ionomer 수복재의 인장강도는 thermal cycling 처리로 증가되는 경향을 보였으며, $37^{\circ}C$의 증류수 중에 1시간 침적한 군과 10,000회의 thermal cycling을 비교한 결과 유의한 차이로서 강도의 증가를 나타냈다(P<0.01). 4. thermal cycling 군의 인장강도는 DR군이 45.4MPa로 최대치를, FL군이 13.4MPa로 최소치를 나타냈으며, 각 군간의 통계적 유의성을 검증한 결과 polyacid-modified resin composite의 인장강도가 나머지 군과 유의한 차이를 보였다(p<0.05). 5. 특성강도는 DR군이 48.6MPa로 가장 높은 강도치를 보였으나 Weibull 계수는 CG군이 8.9로 가장 높은 값을 보여 시험재료 중에서 가장 작은 강도의 분산을 나타냈다.

  • PDF

Thermal Impact Characteristics by Forest Fire on Porcelain Insulators for Transmission Lines

  • Lee, Won-Kyo;Choi, In-Hyuk;Choi, Jong-Kee;Hwang, Kab-Cheol;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.143-146
    • /
    • 2008
  • In this study the thermal impact characteristics by forest fire are extensively investigated using temperature controlled ovens. The test conditions for thermal impact damage are simulated according to the characteristics of natural forest fire. The test pieces are suspension porcelain insulators made by KRI in 2005 for transmission lines. In the thermal impact cycle tests with $300\;^{\circ}C$ thermal impact gradient (-70 to $230\;^{\circ}C$), cycling in 10 minute periods, no critical failures occurred in the test samples even with long cycle times. But in tests with thermal impact gradient from room temperature to $200-600\;^{\circ}C$, cycling in 10 to 30 minute periods, there were critical failures of the porcelain insulators according to the thermal impact gradient and quenching method. In the case of thermal impact by forest fire, it was found of that duration time is more important than the cycling time, and the initiation temperature of porcelain insulator failures is about $300\;^{\circ}C$, in the case of water quenching, many cracks and fracture of the porcelain occurred. It was found that the thermal impact failure is closely related to the displacement in the cement by thermal stress as confirmed by simulation. It was estimated that the initiation displacement by the thermal impact of $300\;^{\circ}C$ is about 0.1 %. Above 1% displacement, it is expected that the most porcelain insulators would fail.

강화형 치관용 복합레진의 인장강도에 관한 연구 (A STUDY ON THE TENSILE STRENGTH OF REINFORCED VENEERING COMPOSITE RESINS FOR CROWN)

  • 안승근;강동완
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.226-241
    • /
    • 2000
  • Recently a new generation of crown and bridge veneering resins containing submicron glass fillers was introduced. These ultrasmall particle hybrid composite materials distinguish themselves, compared with conventional microfill crown and bridge resins, through improved mechanical properties. It is claimed that these composites are suitable for metal free crowns and even bridges using fiber reinforcement. The purpose of this study was to evaluate the effect of thermal cycling on the tensile strength of the following veneering composites: Artglass(Heraeus Kulzer Co., Wehrheim, Germany), Estonia(Kuraray Co.. Japan), Sculpture(Jeneric Pentron Co., Wallingford, U.S.A.), and Targis(Ivoclar Co., Schaan Liechenstein). According to manufacturer's instructions, rectangular tensile test specimens measuring $1.5{\times}2.0{\times}4.5mm$ were made using a teflon mold. Whole specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 10 days, and another group was subjected to thermal cycling($10,000{\times}$) in water($5/55^{\circ}C$). All test specimens were placed in a universal testing machine and loaded until fracture with a crosshead speed of 0.5mm/min. Weibull analysis and Tukey's test were used to analyze the data. The fracture surfaces of specimens were observed in SEM and the aliphatic C=C absorbance peak of Estenia and Targis resin was analyzed using Fourier transform infrared(FTIR) spectroscopy. Within the limitations imposed in this study, the following conclusions can be drawn: 1. Both in drying condition and thermal cycling condition, the highest tensile strength was observed in Estenia testing group(p<0.05). 2. The strength data were at to single-mode Weibull distribution, and the Weibull modulus of all veneering composite resin specimens increased after thermal cycling treatment. 3. After thermal cycling test, the highest tensile strength was observed in the Estenia group, and the lowest value was observed in the Targis group. The tensile strength values showed the significant differences between each group(p<0.05) 4. The aliphatic C=C absorbance peak of Estonia and Targis resin was decreased after light curing, and there was no distinct change after thermal cycling.

  • PDF

열반복 시험 및 유한요소해석을 통한 Mg/Mg-Al18B4O33 경사기능 재료의 열피로특성에 관한 연구 (A study on the Thermal Fatigue Properties of Mg/Mg-Al18B4O33 Functionally Graded Material by Thermal Cycling Test and Finite Element Method)

  • 이욱진;양준성;최계원;박용하;박봉규;박익민;박용호
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.538-544
    • /
    • 2008
  • MMCs were manufactured in two different forms. One was two-layered non FGM composite and the other was four-layered FGM composite. The matrix used in this study was AZ31 magnesium alloy and the reinforcement was $Al_{18}B_4O_{33}$. The composite materials contained reinforcement fibers with a volume fraction of 0, 15, 25 and 40%. Squeeze infiltration method was used for the fabrication of each block. The thermal properties of the FGM alloy and composite joints were studied by conducting thermal cycling tests. The numerical calculation (the finite elements method-FEM) results exhibited a good agreement with the experimental results. Thermal stresses induced by thermal cycling test were clearly reduced in the functionally graded materials.

소형위성 기능시험 및 열주기 시험

  • 박종오;최종연;권재욱;윤영수;조승원;김영윤;안재철;최석원
    • 항공우주기술
    • /
    • 제2권2호
    • /
    • pp.58-65
    • /
    • 2003
  • 소형위성인 다목적실용위성 아리랑1호(KOMPSAT-1)의 PFM (Proto-Flight Model)에 대한 시스템/서브시스템 기능시험 및 열주기시험을 Storage Plan에 의거하여 한국항공우주연구원 우주시험동 하이베이에서 기능시험팀에 의해 수행하여 장기간 저장에 의한 위성 부분품들의 성능이 감쇠됨 없이 양호함을 확인하였다. 본 서에서는 시험항목, 시험방법, 시험절차 및 시험결과를 정리하였다.

  • PDF

송전용 자기재 애자의 성능평가 및 가속열화시험 (Study on Performance and Aging Test of Porcelain Insulators for Transmission Line)

  • 한세원;조한구;박기호;이동일;최인혁
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.842-850
    • /
    • 2003
  • The suspension insulators are subjected to harsh environments in service for a long time. The long-term reliability of tile insulators is required for both mechanical and electrical performances. This study describes some basic performance tests and accelerated aging test by cool-heat cycling methods and thermal mechanical performance test methods on alumina porcelain insulators (new and aged) used for transmission line in KOREA. There was no fail in electrical and mechanical performance tests such as a high voltage strength, a flashover voltage, and an impact strength in all samples. But in the case of accelerating aging tests which have above 9$0^{\circ}C$ temperature gradient, fracture phenomena was happened by a thermal shock in tile aged sample(sample A) with low alumina porcelain body. It was indicated that sample A was more severely aged than other samples. According to results of HRB test and microstructural analysis, it was reasoned that insulator bodies with the matrix reinforced with alumina crystalline phase have advantages over the suppression of crack advance. And cool-heat aging and mechanical thermal ageing tests shows that a temperature gradient is more effective to accelerating than a cycling number.