• 제목/요약/키워드: Thermal convection

검색결과 719건 처리시간 0.033초

연성해석을 이용한 초고압 DSES 온도상승예측 (An Estimation Technology of Temperature Rise in DSES using Three-Dimensional Coupled-Field Multiphysics)

  • 윤정훈;안희섭;최종웅;박석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.847_848
    • /
    • 2009
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule‘s losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in GIS..

  • PDF

나노유체 토로이달 자연대류 루프에서의 열전달 특성 (Heat Transfer Characteristics on Toroidal Convection Loop with Nanofluids)

  • 장주찬;이석호;이충구
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.235-241
    • /
    • 2009
  • Experimental studies on single-phase toroidal circulation loop(thermosyphon) have been performed in the present study with Ag-nanofluids as a working fluids. The present paper deals with an experimental study on the heat transfer behavior of single-phase toroidal loop. Toroidal loop charged with nanofluid has been constructed and a number of tests have been carried out. Different geometric parameter, e.g., orientation has been investigated. The tests were conducted employing two fluids: distilled water and Ag-nanofluid of various volume concentrations. The experiments at Rayleigh number from $10^5$ to $10^6$ showed a systematic and slight deterioration in natural convective heat transfer. It was observed that the deterioration due to the particle concentration was in the range of 5-10%. At a given particle concentration of 0.05%, abrupt decrease in the Nusselt number and the Raleigh number was observed. The present study with toroidal loop shows that the application of nanofluids for heat transfer intensification should not be decided only by the effective thermal conductivity with increasing particle concentration.

일체형 촉매변환기의 비정상 거동의 수치해석적 연구 (A Numerical Study of Trasient Behavior In a Monolithic Catalytic Converter)

  • 배상수;강동진;김수연;임명택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.76-81
    • /
    • 1995
  • A numerical procedure for the analysis of transient behavior in a monolithic catalytic converter is presented. The thermal behavior of a monolithic catalytic converter is fully coupled with mass transfer and exothermic reaction between exhaust gases and the catalytic converter. In the present study, all these processes are solved simultaneously. The heat transfer process is approximated by combinging one dimensional convection and conduction and the chemical reaction is also simply modelled by using the concepts of reaction rate and reaction heat. All the partial diffenrential equations for the heat transfer, mass transfer and chemical reactions are appximated by using finite volume method. Resulting algebraic equations are solved using the Newton's method. To see the workability of present numerical method, two well known problems, say step increase and step decrease in the gas inlet temperature, have been calculated. Comparion of present solutions with previous solutions shows a good agreement.

  • PDF

마찰열에 의한 반무한체 표면균열의 전파특성 (Propagation Characteristics of a Surface Crack on a Semi-Infinite Body Due to Frictional Heating)

  • 박준목;이은호;김재호;김석삼
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3126-3134
    • /
    • 1996
  • In this paper, to examine the propagation of inclined surface crack due to frictional heating, analytic model is considered as the semi-infinite elastic body subjected to the thermo-mechanical loading of an asperity moving with a high speed. Considering the moving of frictional heat source and convection on a semi-infinite surface having inclined crack, theoretical analysis was carried out to estimate the propagation characteristics of thermo-mechanical crack. Numerical results showed that stress intensity factor $K_\prod/P_0\sqrt{c}$ is increasing with increasing velocity and frictional coefficient, inclined degree, decreasing crack length and the maximum value of it is positioned at the trailing edge. So it is shown that the propagation probability of surface crack is high at the trailing edge of contact area as increasing velocity and frictional coefficient, inclined degree, as decreasing crack length.

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

Development of an insulation performance measurement unit for full-scale LNG cargo containment system using heat flow meter method

  • Lee, Jin-sung;Kim, Kyung-su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.458-467
    • /
    • 2018
  • Efforts have been made in this paper to develop the measuring device for the insulation performance of full scale NO96 LNG CCS. The facility was designed to maintain environmental conditions which are similar to operation conditions of full scale LNG CCS. In the facility, the heat sink boundary was kept cryogenic temperature by cold chamber which contains liquefied nitrogen and heat source boundary was made by external case heated by natural convection. Heat Flow Meter method (HFM) was applied to this facility, hence Heat Flux Sensors (HFS) were attached to specimen. The equivalent thermal conductivity of full scale NO96 unit box was targeted to measure and PUF of same size was used for the calibration test. Additionally, the finite element analysis was carried out to check the performance of the developed test facility and experimental results were also compared with those predicted by the numerical method.

MEMS 기반의 차량용 휨형 유속센서의 제작 및 특성 연구 (Study on the Fabrication and Evaluation of the MEMS Based Curved Beam Air Flowmeter for the Vehicle Applications)

  • 박철민;최대근;이상훈
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.116-123
    • /
    • 2016
  • This paper presents the fabrication and evaluation of the novel drag force type air flowmeter using MEMS technologies for the vehicle applications. To obtain the air drag force, the flowmeter utilized the curved beam structure, which was realized by the difference of residual stress between the silicon oxide layer and the silicon nitride layer. The paddle structure was applied for the maximum air drag force, and the dual-beam was adapted to prevent distortion. The basic experiments were performed in the wind tunnel, and the stable outputs were obtained. The device was applied to the internal combustion engine, and the results were compared with the HI-DS output where the convection thermal flowmeter was used as the reference sensor. The results indicated that the comparable resolutions and response times were obtained under the various engine speeds.

400KVA급 배전 변 압기 열 유동해석 (Numerical analysis for the dis tribution transformer design)

  • 양시원;김원석;권기영;이승구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.699-702
    • /
    • 2008
  • This paper describes the numerical simulations in the cooling of the radiator in a distribution transformer. The aim of this work is the cooling optimization of the transformer by CFD simulations. A clear understanding of the cooling pattern in a radiator which is a main heat remover in the power transformer is essential for optimizing the radiator design increasing the thermal efficiency. In this paper we study the heat transfer and fluid flow in a 3-phase 400kVA transformer. The plate radiators of this transformer become wrinkled (corrugated radiator) and there are filled with transformer oil. The oil is circulated due to the natural convection driven by buoyancy effects through radiators so that the ultimate cooling medium is the surrounding air. In the design of transformers, it is of interest to minimize the cost and size of radiators. The obtained results show the temperature and flow distributions and the possibility to optimize the transformer with 3-dimensional CFD models using FLUENT.

  • PDF

제트 확산화염의 연소특성과 매연생성에 관한 연구 (Combustion Characteristics and Soot Formation in a Jet Diffusion Flame)

  • 이교우;백승욱
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2712-2723
    • /
    • 1994
  • Numerical simulation of an axisymmetric ethylene-air jet diffusion flame has been carried out in order to investigate flame dynamics and soot formation. The model solves the time-dependent Navier-Stokes equations and includes models for soot formation, chemical reaction, molecular diffusion, thermal conduction, and radiation. Numerically FCT(Flux Corrected Transport) and DOM(Discrete Ordinate Method) methos are used for convection and radiation trasport respectively. Simulation was conducted for a 5 cm/sec fuel jet flowing into a coflowing air stream. The maximum flame temperature was found to be approximately 2100 K, and was located at an axial position of approximately 5 cm from the base of the flame. The maximum soot volume fraction was about $7{\times}10^{-7}$, and was located within the high temperature region where the fuel mole fraction ranges from 0.01 to 0.1. The buoyancy-driven low-frequency(12~13 Hz) structures convected along the outer region of the flame were captured. In case without radiation trasport, the maximum temperature was higher by 150 K than in case with radiation. Also the maximum soot volume fraction reached about $8{\times}10^{-6}$. As the the hydrocarbon fuel forms many soot particles, the radiation transport becomes to play a more important role.

엘리베이터 카 내부 기류분포에 관한 열 유동해석 (Thermal and Fluid Analysis on Air Distribution in a Elevator Car)

  • 정경택;이중섭
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.