• 제목/요약/키워드: Thermal convection

검색결과 717건 처리시간 0.027초

유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여 직사각형 공동에서의 난류 자연대류 해석 (COMPUTATION OF TURBULENT NATURAL CONVECTION IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME BASED LATTICE BOLTZMANN METHOD)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.39-46
    • /
    • 2011
  • A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

열교환법 공정에서 고/액 계면의 형태에 미치는 자연대류의 영향 (Effects of natural convection on the melt/solid interface shape in the HEM process)

  • 왕종회;김도현
    • 한국결정성장학회지
    • /
    • 제7권1호
    • /
    • pp.41-46
    • /
    • 1997
  • 열교환법에 의한 결정 성장에서 용융액 내에서의 유동장의 변화와 대류 열전달이 고/액 계면의 형태와 위치에 미치는 영향에 대해 고찰하였다. 비록 도가니 내의 온도분포가 안정한 구조라도 고/액 계면이 반구형태를 가지기 때문에 안정화가 깨어지게 되고, 반경방향 온도 기울기에 의한 용응액 내에서의 자연대류 흐름이 무시할 수 없을 정도로 발생한다. 대류 열전달이 존재하는 경우에 최대 휨도는 대류 열전달이 존재하지 않은 경우에 비해 감소하며, 열교환법에서의 정확한 열전달 공정모사를 위해 대류 열전달이 고려되어야 한다.

  • PDF

동섬 및 편섬된 두 수형원판 사이의 환상유로에서의 복사와 자연대류간의 상호작용 (Radiation - Natural Convection Interactions in Concentric and Eccentric Horizontal Annuli)

  • 한조영;백승욱
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1796-1804
    • /
    • 1998
  • A numerical investigation has been performed to discuss the radiation-affected steady-laminar natural convection induced by a hot inner cylinder under a large temperature difference in the annuli filled with a gray gas. To examine the effects of thermal radiation on thermo-fluid dynamic behaviors in the eccentric geometry, the generalized body-fitted coordinate system is introduced while the finite volume method (FVM) is used for solving the radiative transport equation. After validating the numerical results for the case without radiation, the detailed radiation effect has been discussed. Based on the results of this study, when there exists a large temperature difference between two cylinders, the existence of radiatively participating medium is found to incur a distinct difference in fluid dynamic as well as thermal behavior.

CFD를 이용한 히트싱크의 열 해석 (Thermal Analysis of Heat Sink Models using CFD simulation)

  • 임송철;이명호;강계명
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.829-832
    • /
    • 2005
  • Thermal analysis of new designed heat-sink models was carried out according to the natural ana the forced convection using computational fluid dynamics(CFD). Heat resistance of wave type, top vented wave type and plate type of heat sink was compared with each other As the direction of fin and air flow are vertical(z-axis), it is shown that radiant heat performance of all of heat sinks was superior than other experimental conditions. Especially, the heat resistance of top vented wave heat sink was $0.17^{\circ}C/W$(forced convection) and $0.48^{\circ}C/W$(natural convection). The radiant heat performance of heat sink was increased with increasing the height of fin and the width of fin pitch.

홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Convection Cell 내부 열유동 해석 (Measurement of Thermal Flow in a Hele-Shaw Convection Cell Using Holographic Interferometry and PIV Technique)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.35-38
    • /
    • 2002
  • Variations of temperature and velocity fields in a Hele-Shaw Convection Cell (HSC) were measured using a holographic interferometry and PIV technique with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. PIV results show that flow inside the HSC is periodic and the oscillating state is well matched with the temperature field results. The holographic interferometry and PIV techniques employed in this study are useful for analyzing the unsteady convective thermal fluid flows.

  • PDF

발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구 (Numerical Simulation of Natural Convection in Horizontal Enclosure with Heat-Generating Conducting Body)

  • 이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.441-452
    • /
    • 2005
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}\;to\;10^{6}.$ Multi-domain technique is used to handle square- shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

Study on the Natural Convection Heat Transfer Characteristics in the Air Duct

  • Kim, Y.K.;Lee, Y.B.;Park, S.K.;J.S. Hwang;H.Y. Nam
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.451-456
    • /
    • 1997
  • Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of porous media with different geometry and to obtain the experimental data for the heat transfer processes by natural convection occurring in the air duct. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method. The test at air duct was performed to the high heat removal at 3.4kW/$m^2$ by the natural convection from the outer wall to the air. And also the temperature distributions in the air duct agree well with the 1/7th power-law turbulent temperature distribution. The obtained heat transfer data have been compared with the Shin's and Sieger's correlations.

  • PDF

농산물 저장 시설에서의 열대류 현상의 해석 (An Analysis of Thermal Convection in Agricultural-Products Storge System)

  • 김민찬;현명택;고정삼
    • 한국식품저장유통학회지
    • /
    • 제4권1호
    • /
    • pp.27-32
    • /
    • 1997
  • Natural convection in agricultural-products storage system was analysed theoretically, The storage system was modelled by Internally heated fluid saturated porous layer. Darcy's law was used to explain characteristics of fluid motion. Stability equations were obtained under the linear stability theory and transfer characteristics were modelled by the shape assumption. Based on the modelling of transfer characteristics, heat trasnfer correlations were derived theoretically.

  • PDF

접촉열저항이 있는 수직벽에서의 응고과정 해석 (Analysis of the Solidification Process at a Vertical Wall With Thermal Contact Resistance)

  • 이진호;모정하;황기영
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.193-201
    • /
    • 1995
  • The role of thermal contact resistance between a casting and a metal mold as well as natural convection in the melt during solidification of a pure metal is numerically studied. Numerical simulation is performed for a rectangular cavity using the coordinate transformation by boundary-fitted coordinate and pure aluminum is used as the phase- change material. The influences of thermal contact resistance on the interface shape and position, solidified volume fraction, temperature field and local heat transfer are investigated.