• Title/Summary/Keyword: Thermal convection

Search Result 714, Processing Time 0.02 seconds

Lead bromide crystal growth from the melt and characterization: the effects of nonlinear thermal boundary conditions on convection during physical vapor crystal growth of mercurous bromide

  • Geug-Tae Kim;Moo Hyun Kwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.160-168
    • /
    • 2004
  • We investigate the effects of solutal convection on the crystal growth rate in a horizontal configuration for diffusive-convection conditions and purely diffusion conditions achievable in a low gravity environment for a nonlinear thermal gradient. It is concluded that the solutally-driven convection due to the disparity in the molecular weights of the component A $(Hg_2Br_2)$ and B (CO) is stronger than thermally-driven convection for both the nonlinear and the linear thermal profiles, corresponding to $Gr_t= 8.5{\times}10^3,\; Gr_s = 1.05{\times}10^5$. For both solutal and thermal convection processes, the growth rates for the linear thermal profile (conducting walls) are greater than for the nonlinear case. With the temperature humps, there are found to be observed in undersaturation for diffusive-convection processes ranging from $D_{AB}$ = 0.087 to 0.87. For the vertical configurations, the diffusion mode is so much dominated that the growth rate and interfacial distribution is nearly regardless of the gravitational accelerations. Also, the diffusion mode is predominant over the convection for the gravity levels less than 0.1 $g_0$ for the horizontally oriented configuration.

Numerical investigation of two-component single-phase natural convection and thermal stratification phenomena in a rod bundle with axial heat flux profile

  • Grazevicius, Audrius;Seporaitis, Marijus;Valincius, Mindaugas;Kaliatka, Algirdas
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3166-3175
    • /
    • 2022
  • The most numerical investigations of the thermal-hydraulic phenomena following the loss of the residual heat removal capability during the mid-loop operation of the pressurized water reactor were performed according to simplifications and are not sufficiently accurate. To perform more accurate and more reliable predictions of thermal-hydraulic accidents in a nuclear power plant using computational fluid dynamics codes, a more detailed methodology is needed. Modelling results identified that thermal stratification and natural convection are observed. Temperatures of lower monitoring points remain low, while temperatures of upper monitoring points increase over time. The water in the heated region, in the upper unheated region and the pipe region was well mixed due to natural convection, meanwhile, there is no natural convection in the lower unheated region. Water temperature in the pipe region increased after a certain time delay due to circulation of flow induced by natural convection in the heated and upper unheated regions. The modelling results correspond to the experimental data. The developed computational fluid dynamics methodology could be applied for modelling of two-component single/two-phase natural convection and thermal stratification phenomena during the mid-loop operation of the pressurized water reactor or other nuclear and non-nuclear installations at similar conditions.

Thermal Convection with Conducting Lid (전도체가 존재하는 자연대류 현상에 대한 수치적 유동 가시화)

  • Ha Man Yeong;Lee Jae Ryong;Balachandar S.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.117-120
    • /
    • 2005
  • This study of thermal convection uses the following geometry: a horizontal layer of fluid heated from below of solid lid at bottom and cooled from above. A variety range of thermal conductivity ratio, $\kappa$ is considered to investigate the interface temperature, $\theta_{i}$ between solid and fluid region. Periodic boundary conditions are employed in the horizontal direction to allow for lateral freedom for the convection cells. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral multi-domain methodology, for different effective Rayleigh numbers, $Ra_{eff}$ varying over the range of $10^{4}\;to\;10^{7}$ in which the effective Rayleigh number is defined as $Ra{\times}<\overline{T}_{i}>$.

  • PDF

Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics ($Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향)

  • 한봉석;이홍림;전명철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

Comparison of Thermal Protective Performance Test of Firefighter's Protective Clothing against Convection and radiation heat sources (대류와 복사 열원에 대한 특수방화복의 열보호 성능시험 비교)

  • Kim, Hae-Hyoung;Yoo, Seung-Joon;Park, Pyoung-Kyu;Kim, Young-Soo;Hong, Seung-Tae
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.17-23
    • /
    • 2017
  • The test methods using convection (flame) and radiation heat sources were compared to evaluate the thermal protective performance of the firefighter's protective clothing. In particular, the influence of the outer shell, mid-layer, and lining constituting the firefighter's protective clothing on the thermal protective performance was compared for convection and radiation heat sources. Tests for the thermal protective performance were carried out according to KS K ISO 9151 (convection), KS K ISO 6942 (radiation), and KS K ISO 17492 (convection and radiation). When tested under the same incident heat flux conditions ($80kW/m^2$), the heat transfer index ($t_{12}$ and $t_{24}$) for the radiation heat source was higher than that for the convection heat source. This means that radiation has a lesser effect than convection. For the convection heat source, the lining had the greatest effect on the thermal protective performance, followed by the mid-layer and the outer shell. On the other hand, for the radiation heat source, the effect on the thermal protective performance was great in the order of lining, outer shell, and mid-layer. Convection and radiation have fundamentally different mechanisms of heat transfer, and different heat sources can lead to different thermal protective performance results depending on the material composition. Therefore, to evaluate the thermal protective performance of the firefighter's protective clothing, it is important to test not only the convection heat source, but also the radiation heat source.

Natural Convection Heat Transfer from a Heated Fine Wire in Nanofluids (나노유체에 잠긴 가는 열선 주위의 자연대류 열전달)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.807-813
    • /
    • 2007
  • Recent research on nanofluids under forced convection experiment shows that there is little relationship between convective heat transfer and thermal conductivity increase of nanofluids. This kind of new findings are totally different from the traditional theory of nanofluids, which says that the higher thermal conductivity is a prerequisite for convective heat transfer enhancement. To elucidate this controversial issue in a very comprehensible manner, simple natural convection experiment has been carried out for the water- and oil-based nanofluids. ($water-Al_2O_3$, transformer $oil-Al_2O_3$) Present research shows that there exists strong dependence between natural convection performance and thermal conductivity increase of nanofluids.

An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks (다양한 형상의 Heat Sink 열저항 특성에 관한 실험적 연구)

  • 김종하;윤재호;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.676-682
    • /
    • 2002
  • This paper has been made to investigate the thermal performance characteristics for the several types of heat sinks such as extruded heat sink, aluminum foam heat sink, layered heat sink. The various types heat sinks are prepared and tested for natural convection as well as forced convection. The experimental results for natural convection are compared to those for three types of heat sink so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for layered heat sink, extruded heat sink and aluminum foam heat sink are almost comparable to those under natural convection and forced convection. The forced convection of layered heat sink become 1.2 times as high as those of extruded heat sink, and the forced convection of extruded heat sink become 1.2 times as high as those of aluminum foam heat sink. This study shows that bar height, bar distance and number of bar for layered heat sink are important parameters, which have a serious influence on thermal performance for layered heat sinks.

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

COMPUTATION OF NATURAL CONVECTION AND THERMAL STRATIFICATION USING THE ELLIPTIC BLENDING MODEL (Ellipting Blending Model에 의한 자연대류 및 열성층 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.77-82
    • /
    • 2006
  • Evaluation of the elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of natural convection and thermal stratification. For a natural convection problem the models are applied to the prediction of a natural convection in a rectangular cavity and the computed results are compared with the experimental data. It is shown that the elliptic blending model predicts as good as or better than the existing second moment differential stress and flux model for the mean velocity and turbulent quantities. For thermal stratification problem the models are applied to the thermal stratification in the upper plenum of liquid metal reactor. In this analysis there exist much differences between the turbulence models in predicting the temporal variation of temperature. The V2-F model and EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

Analysis on the Thermal Response of Electronic Assemblies during Forced Convection-Infrared Reflow Soldering (강제대류-적외선 리플로 솔더링시 전자조립품의 열적반응 분석)

  • 손영석;신지영
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.46-54
    • /
    • 2003
  • The thermal response of electronic assemblies during forced convection-infrared reflow soldering is studied. Soldering for attaching electronic components to printed circuit boards is performed in a process oven that is equipped with porous panel heaters, through which air is injected in order to dampen temperature fluctuations in the oven which can be established by thermal buoyancy forces. Forced convection-infrared reflow soldering process with air injection is simulated using a 2-dimensional numerical model. The multimode heat transfer within the reflow oven as well as within the electronic assembly is simulated. Parametric study is also performed to study the effects of various conditions such as conveyor speed, blowing velocity, and electronic assembly emissivity on the thermal response of electronic assemblies. The results of this study can be used in the process oven design and selecting the oven operating conditions to ensure proper solder melting and solidification.