• Title/Summary/Keyword: Thermal conditions

검색결과 4,621건 처리시간 0.03초

Mechanical and thermal properties of 3D printing metallic materials at cryogenic temperatures

  • Jangdon Kim;Jaehwan Lee;Seokho Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권2호
    • /
    • pp.24-30
    • /
    • 2024
  • Metal 3D printing is utilized in various industrial fields due to its advantages, such as fewer restrictions on production shape and reduced production time and cost. Existing research on 3D printing metal materials focused on changes in material properties depending on manufacturing conditions and was mainly conducted in a room temperature environment. In order to apply metal 3D printing products to cryogenic applications, research on the properties of materials in cryogenic environments is necessary but still insufficient. In this study, we evaluate the properties of stainless steel (STS) 316L and CuCr1Zr manufactured by Laser Powder Bed Fusion (LPBF) in a cryogenic environment. CuCr1Zr is a precipitation hardening alloy, and changes in material properties were compared by applying various heat treatment conditions. The mechanical properties of materials manufactured using the LBPF method are evaluated through tensile tests at room temperature and cryogenic temperature (77 K), and the thermal properties are evaluated by deriving the thermal conductivity of CuCr1Zr according to various heat treatment conditions. In a cryogenic environment, the mechanical strength of STS 316L and CuCr1Zr increased by about 150% compared to room temperature, and the thermal conductivity of CuCr1Zr after heat treatment increased by about 6 to 10 times compared to before heat treatment at 40 K.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • 대한인간공학회지
    • /
    • 제36권3호
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

고출력 GaN-based LED의 열적 설계 및 패키징

  • 신무환
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.24-24
    • /
    • 2003
  • Research activity in the III-V nitrides materials system has increased markedly in the past several years ever since high-brightness blue light-emitting diodes (LEDs) became commercially available. Despite of excellent optical properties of the GaN, however, inherently poor thermal property of the sapphire used as a substrate material n these devices may lead to thermal degradation of devices, especially during their high power operation. Therefore, dependable thermal analysis and packaging schemes of GaN-based LEDs are necessary for solid lighting applications under high power operation. In this paper, emphasis will be placed upon thermal design of GaN-based LEDs. Thermal measurements of LEDs on chip and packaging scale were performed using the liquid crystal thermographic technology and micro thermocouples for different bias conditions. By a series of optical arrangement, hot spots with specific transition temperatures were obtained with increasing input power. Thermal design of LEDS was made using the finite element method and analytical unit temperature profile approach with optimal boundary conditions. The experimental results were compared to the simulated data and the results agree well enough for the establishment of dependable prediction of thermal behavior in these devices. The paper will present a more detailed understanding of the thermal analysis of the GaN-based blue and white LEDs for high power applications.

  • PDF

Multimax Reactor System을 이용한 시멘트 혼화제 제조시 에스테르화공정의 열적 위험성 평가 (Assessment of Thermal Hazard on Esterification Process in Manufacture of Concrete Mixture Agents by Multimax Reactor System)

  • 한인수;이근원;표돈영
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.13-20
    • /
    • 2009
  • The risk assessment of thermal hazard to identify chemical or process hazard during early process developments have been considered. The early identification of thermal hazards associated with a process, such as rapid heats of reaction, exothermic decompositions, and the potential for thermal runaways before any large scale operations are undertaken. This paper presents to evaluate the safe operating parameters/envelope for exist plant operations. The assessment of thermal hazard with operating conditions such as amount of process materials, inhibitor, and catalyst on esterification process in manufacture of concrete mixture agents are described. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool. The aim of the study was to evaluate the thermal risk of process material and mixture in terms of safety security to be practical applications in esterification process. It suggested that we should provide the thermal hazard of reaction materials to present safe operating conditions with cause of accident through this study.

공무원의 온맵시 의복 착용과 캠페인 만족도 조사 (Research on the Actual Conditions of the Onmapsi Campaign and Its Satisfaction of Government Officers)

  • 나영주;손민영
    • 한국의류학회지
    • /
    • 제36권9호
    • /
    • pp.991-999
    • /
    • 2012
  • The Korean wintertime Onmapsi Campaign recommends wearing underwear, layered clothing, or thermal accessories in an indoor environment of a lower than room-heating condition. We surveyed 132 government officers, about Onmapsi wearing conditions and campaign satisfaction. The term was found to be unfamiliar to them, even if they wore underwear or thermal accessories as participants in the campaign for the wintertime office of low temperature 18-$20^{\circ}C$. They wore thick shirt/pants or cardigans/sweaters; however, underwear or thermal vests was worn relatively less. They wear 2.9 layers on top and 1.7 layers in bottom in average. They have their own methods to keep the body warm, which are using 1) functional thermal clothing, such as turtleneck shirts of heat technology new material, 2) functional thermal accessories, such as warmer and muffler, 3) functional office goods, such as a thermal computer mouse and blanket on the desk. The campaign requires more advertisement, a revision on the details of the proper wintertime indoor environment, and develops the varieties of Onmapsi apparel.

Temperature and thermal stress distributions in a hollow circular cylinder composed of anisotropic and isotropic materials

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Sadeghzadeh-Attar, Abbas
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.15-32
    • /
    • 2020
  • In this article, an analytical solution is presented for the steady-state axisymmetric thermal stress distributions in a composite hollow cylinder. The cylinder is composed of two isotropic and anisotropic materials which is subjected to the thermal boundary conditions of convective as well as radiative heating and cooling on the inner and outer surfaces, respectively. The solution of the temperature is obtained by means of Bessel functions and the thermal stresses are developed using Potential functions of displacement. Numerical results are derived for a cylinder which is similar to a gas turbine combustor and showed that the maximum temperature and thermal stresses (radial, hoop, axial) occurred in the middle point of cylinder and the values of thermal stresses in anisotropic cylinder are more than the isotropic cylinder. It is worthy to note that the values of the thermal conditions which estimated in this research, not to be presented in any other papers but these values are very accurate in calculation.

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • 제25권4호
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

열처리 조건에 따른 비닐절연전선의 특성 변화 (Characteristics of Vinyl Insulated Wire with Thermal Treatment Conditions)

  • 최충석;박창수;송길목;이경섭;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1401-1403
    • /
    • 1998
  • The composition, weight decrease, DTA, and surface structure of vinyl insulated wire with thermal treatment conditions have been investigated. The composition of Cu by EDX analysis indicates Cu, Cl, and O lines, and oxidation reaction results from thermal treatment. Thermal treated IV and HIV appeared chemical reaction at $269^{\circ}C$ and $265^{\circ}C$, respectively. SEM of thermal treated Cu at $250^{\circ}C$ disappears an elongation structure, and appears an original structure.

  • PDF

강제대류-적외선 리플로 솔더링시 전자조립품의 열적반응 분석 (Analysis on the Thermal Response of Electronic Assemblies during Forced Convection-Infrared Reflow Soldering)

  • 손영석;신지영
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.46-54
    • /
    • 2003
  • The thermal response of electronic assemblies during forced convection-infrared reflow soldering is studied. Soldering for attaching electronic components to printed circuit boards is performed in a process oven that is equipped with porous panel heaters, through which air is injected in order to dampen temperature fluctuations in the oven which can be established by thermal buoyancy forces. Forced convection-infrared reflow soldering process with air injection is simulated using a 2-dimensional numerical model. The multimode heat transfer within the reflow oven as well as within the electronic assembly is simulated. Parametric study is also performed to study the effects of various conditions such as conveyor speed, blowing velocity, and electronic assembly emissivity on the thermal response of electronic assemblies. The results of this study can be used in the process oven design and selecting the oven operating conditions to ensure proper solder melting and solidification.

고속공작기계 주축의 열적거동 특성 해석 (An analysis of the thermal behaviour of a high speed machine tool spindle)

  • 고태조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 춘계학술대회 논문집
    • /
    • pp.9-16
    • /
    • 1995
  • The thermal deformation of machine tool spindle influences the performance of the manufacturing systems for precision products. In this research thermal analysis of a high speed machine tool spindle with the rolling bearing and the built-in motor is carried out using Finite Difference Method. The thermal boundary conditions describing the hear generation in the bearing and built-in motor are considered in the simulation. And various convective boundary conditions are assumed with the empirical formula in the references. From the simulation results the characteristics of each element affecting the dynamic thermal behaviour of the machine tool spindle systems have been clarified. This model can be well applied to the future development of the high speed spindle systems.

  • PDF